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Abstract 

Gypsum, which is dihydrate calcium sulfate, (CaSO4.2H2O), is widely available 

in different sizes, from the size of a rock to the size of a few micrometers as a mineral, in 

different types of soils. It is primarily found mainly in arid and semi-arid areas around the 

world at different depths. Soils with gypsum and even gypsum rocks are very hard in 

their dry state. However, these soils and rock will experience remarkable dissolution 

upon wetting. 

The dissolution phenomenon, which takes place in soils that contain gypsum, 

creates different geotechnical problems within the soil’s profile, along with foundation 

issues for structures that have been constructed on this type of soil. Noticeable structural 

damage and collapses, which occurred in heavy and light structures, such as earthen 

dams, power plants, houses, and even roads, were related to the subsidence of soil with 

gypsum due to gypsum dissolution. The behavior that was exhibited by this problematic 

soil has captured the attention of civil engineers and scientists since the first quarter of 

the 20th century.  

Many studies were conducted in different types of soils that contain gypsum 

within different soil profile depths to investigate the effects of this mineral on the 

properties of these soils. Those studies concluded that there are many factors that control 

the solubility of gypsum within the soil profile.  
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Studies that have been presented in this dissertation focused on the effects of the 

most important factors on the dissolution of gypsum, which are gypsum content, wetting-

drying cycles, static and moving water. As a result, on soil stability, mass loss, porosity, 

and soil permeability were investigated.  

Various tests and treatments were performed on two types of soils to study these 

effects. These soils are poorly graded sandy soils with different gypsum content that were 

brought from New Mexico. The first soil consisted of 93% gypsum (high gypsum soil), 

while the second soil consisted of 31% gypsum (medium gypsum soil). 

First, these soils were classified, and then different types of hydration methods 

were used to measure the gypsum content. An evaluation of one of the dehydration 

method was conducted to select the best approach to measuring the gypsum content for 

different soil types, regardless of the size of the gypsum particles. Then, a measurement 

method was selected to determine the dissolved gypsum in the water and convert this 

measurement into a gypsum mass. 

Three different additives (activated fly ash, asphalt emulsion, and Portland 

cement) were evaluated to select the appropriate additive that would enhance the 

mechanical properties of these soils. The selection of these additives was based on two 

criteria. First, additive must be inexpensive and available. Second, the impact of the 

additive on the environment and its ability to treat soil with gypsum was also considered. 

Based on these criteria, two additives were chosen: fly ash and asphalt. Fly ash is 

a waste material that is produced after the combustion of coal in power plants.  

Asphalt waste is a byproduct or sometimes is found in waste material that is 

produced from refining crude oil.  
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However, since asphalt binder requires high temperature in order to be melted and 

mixed with soil, and, considering safety concern and ease of use, a decision was made to 

use an anionic asphalt emulsion instead. A third option was to use Portland cement type 

I/II as a reference additive. 

The studies were shown in four different objectives in Chapters 4, 5, 6, and 7. 

Chapter 4 discusses the activated fly ash treatment, in which 12 M of KOH was used to 

activate Class F fly ash to treat both soils. 10%, 20%, and 30% doses of activated fly ash 

were used in the treatment with curing periods of 7 and 28 days. Then, soil specimens 

went through 12 cycles of wetting and drying. The results showed that this treatment 

enhanced the soil stability and reduced the dissolution of gypsum. However, this 

treatment did not prevent or mitigate mass loss. 

The second objective is discussed in Chapter 5. This chapter discusses the effects 

of static water on the dissolution of gypsum, and its results on soil stability, mass loss, 

and porosity for specimens that were treated with two different additives: anionic asphalt 

emulsion (6%, 12%, and 18%), and type I/II Portland Cement (9%). The results showed 

that the use of asphalt emulsions significantly improved soil stability, reduced gypsum 

dissolution and porosity, and mitigated mass loss when compared to the use of cement. 

Chapter 6 discussed the effect of moving water on gypsum dissolution and soil 

permeability for both soils in three different states: soil in its natural condition, soil that 

was treated with 6% asphalt emulsion, and soil that was treated with 18% asphalt 

emulsion. Two different approaches were used to prepare and mix the asphalt emulsion 

with the soils. The first approach was conducted by mixing the soils with 6% asphalt 

emulsion, curing them, and then compacting them in constant head permeability cells. 
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The second approach was performed by mixing the soils with 18% asphalt 

emulsion, compacting them in PVC molds, and then curing them before placing them in 

flexible wall permeability cells.  

The results showed that moving water had significant effect on the dissolution of 

gypsum, particularly for high gypsum soil. Moreover, the second treatment approach had 

a significant impact on soil permeability by reducing it to a state where water no longer 

flowed through the high gypsum soil. This approach also led to a reduction in gypsum 

dissolution for both soils. 

 The unconfined compressive strength for different specimens treated with 

activated fly ash, asphalt emulsion, and Portland cement were measured and compared 

with each other, as described in Chapter 7. Although the results suggested that the highest 

strength was achieved by treating both soils with 9% Portland cement, this option is not 

preferable due the sulfate attack that occurred in the soil upon wetting due to the presence 

of gypsum. The use of asphalt emulsion remained the best and preferred treatment. 

Finally, Chapter 8 provides the conclusions and the recommendations, based on 

the results that were provided. that the results of these studies suggested. The outcome of 

the studies that have been presented in this dissertation show that gypsum content has a 

significant impact on soil stability.  

Moreover, moving water contributes to the deterioration of these soils by 

increasing the dissolution of gypsum, which suggest that and preventing direct contact 

between the water and the gypsum particles will enhance soil stability. The effects of 

wetting-drying cycles can be mitigated by using asphalt emulsions or asphalt binders. 

The use of asphalt emulsions enhances different properties for soil with gypsum.        



www.manaraa.com

x 
 

Table of Contents 

Dedication ....................................................................................................................... iii 

Acknowledgments......................................................................................................... iv 

Abstract ............................................................................................................................ vi 

List of Tables ................................................................................................................ xiii 

List of Figures ................................................................................................................xv 

Chapter 1 Introduction ...................................................................................................1 

1.1 Problem statement ........................................................................................2 

1.2 Research questions .......................................................................................2 

1.3 Dissertation structure .......................................................................3 

Chapter 2 Background ...................................................................................................5 

2.1 Gypsum in soil ..............................................................................................5 

2.2 Classification of gypsum in soil ...............................................................6 

2.3 Classification methods for soil with gypsum ........................................8 

2.4 Gypsum content of soil .............................................................................12 

2.5 Problems related to gypsum in soil ........................................................17 

2.6 Traditional treatment when gypsum is encountered in soil .............26 

2.7 Literature review of soil with gypsum treatment ...............................28 



www.manaraa.com

xi 
 

Chapter 3 Gypsum and Collapse Potential Measurements .................................33 

3.1 Gypsum content measurements ..............................................................33 

3.2 The estimation of the dissolved gypsum in a solution ......................48 

3.3 Collapse potential for natural soils ........................................................52 

Chapter 4 The Behavior of Gypseous and Gypsiferous  

Sandy Soils Treated with Activated Fly ash after  

Exposed to Wetting-Drying Cycles ..............................................................55 
 

4.1 Introduction .................................................................................................55 

4.2 Materials and methods ..............................................................................58 

4.3 Results and discussion ..............................................................................62 

4.4 Summary and conclusions .......................................................................78 

Chapter 5 The Effect of Static Water on The Behavior and  

Gypsum Dissolution for Gypseous and Gypsiferous Sandy 

Soils Treated with Asphalt Emulsion and Portland Cement ..............................80 
 

5.1 Introduction .................................................................................................80 

5.2 Materials and methods ..............................................................................81 

5.3 Results and discussion ..............................................................................86 

5.4 Summary and conclusions .......................................................................99 

Chapter 6 The Effect of Moving Water on the permeability  

and the Gypsum Dissolution for Gypseous and Gypsiferous 

Sandy Soils Treated with Asphalt Emulsion ........................................................102 
 

6.1 Materials and Methods ...........................................................................102 

6.2 Results and discussion ............................................................................104 



www.manaraa.com

xii 
 

6.3 Summary and conclusions .....................................................................128 

Chapter 7 A Comparison Between the Unconfined  

Compressive Strength (UCS) for Gypseous and  

Gypsiferous Sandy Soils Treated with Activated  

Fly ash, Asphalt Emulsion, and Portland Cement ..................................130 

 

7.1 Materials and methods ............................................................................130 

7.2 Results and discussion ............................................................................131 

7.3 Summary and conclusions .....................................................................141 

Chapter 8 Conclusions and Recommendations ...................................................144 

8.1 Conclusions ...............................................................................................144 

8.2 Recommendations ....................................................................................150 

References .....................................................................................................................153 

 

 

 

 

 

 

 

 

 



www.manaraa.com

xiii 
 

List of Tables 

Table 2.1 Soil classification methods evaluation ...............................................................12 

Table 2.2 Results from Khalil (1982) ............................................................................................. 16 

Table 2.3 The dehydration methods ............................................................................................... 17 

Table 2.4 Soil classification according to collapse potential ..............................................24 

Table 3.1 W110ºC weights and gypsum content for Soil 1 ...............................................35 

Table 3.2 W110ºC weights and gypsum content for Soil 2 ...............................................37 

Table 3.3 Gypsum content for Soil 1 .................................................................................41 

Table 3.4 Gypsum content for Soil 2 .................................................................................41 

Table 3.5 Set No. 1 (12/27/2016).......................................................................................42 

Table 3.6 Set No. 2 (01/20/2017).......................................................................................43 

Table 3.7 Set No. 3 (01/23/2017).......................................................................................43 

Table 3.8 Set No. 4 (01/25/2017).......................................................................................43 

Table 3.9 Characteristics of gypsum materials ..................................................................46 

Table 3.10 Pure gypsum concentrations with EC measurements ......................................49 

Table 3.11 Soil 1 concentrations with EC measurements..................................................50 

Table 3.12 Soil 2 concentrations with EC measurements..................................................51 

Table 4.1 Physical Properties for Soils ........................................................................................... 58 

Table 4.2 Deviations from ASTM D559/D559M – 15 ......................................................61 

Table 4.3 Soil Specimens’ Identification ...........................................................................63 

Table 4.4 Gypsum in Specimens Before, During, and After W-D Cycles ........................73



www.manaraa.com

xiv 
 

Table 4.5 Results of UCS and E for Survived and Control Specimens .............................76 

Table 5.1 Soil specimen identification ...............................................................................84  

Table 5.2 Deviations from ASTM D559/D559M – 15 for asphalt  

emulsion treatment .................................................................................................85 

 

Table 5.3 Deviations from ASTM D559/D559M – 15 for Portland  

cement treatment ....................................................................................................85 

 

Table 5.4 Total mass loss of N2 specimens .......................................................................93 

Table 5.5 The EC measurements in each cycle for silica sand specimens ........................97 

Table 5.6 Max. potential and measured gypsum dissolution in both soils ........................99 

Table 7.1 UCS and E for W-D survived specimens (activated fly ash) ..........................132 

Table 7.2 UCS and for W-D survived specimens (asphalt emulsion) .............................136 

Table 7.3 UCS and E for W-D survived specimens (Portland cement) ...........................140  



www.manaraa.com

xv 
 

List of Figures 

Figure 1.1 Global distribution of soil with gypsum  

(Boyadgiev and Verheye, 1996) ..............................................................................1 

 

Figure 2.1 Gypsum crystal structure (Chen 2006 cited by Yu et al. 2015) .........................6 

Figure 2.2 Gypseous soils components from two different regions in the  

world (after Salih 2013) ...........................................................................................7 

 

Figure 2.3 The solubility of gypsum, hemihydrate, and anhydrite with  

temperature (Azimi et al. 2007 cited by Casby-Horton et al. 2015) ......................18 

 

Figure 2.4 Single odometer test (Jinnings and Knight 1975) ............................................22 

Figure 2.5 Double odometer test (Jinnings and Knight 1975) ...........................................23 

Figure 2.6 Excavation for traditional treatment for soil with gypsum ...............................27 

Figure 2.7 Compression and swelling indices modification (Aziz and Ma 2011) ......................... 31 

Figure 3.1 Grain size distribution for Soil 1 ......................................................................33

Figure 3.2 Grain size distribution for Soil 2 ......................................................................34

Figure 3.3 Relationship between W110ºC and gypsum content  

 and time for Soil 1/Sample D1..........................................................................................36 

 

Figure 3.4 Relationship between W110ºC and gypsum content  

 and time for Soil 1/sample D3 ..........................................................................................36

Figure 3.5 Relationship between W110ºC and gypsum content  

and time for Soil 2/sample D7 ...........................................................................................37 

 

Figure 3.6 Relationship between W110ºC and gypsum content  

and time for Soil 2/sample D8 ...........................................................................................38

Figure 3.7 The combination of the four sets for Soil 1 ......................................................44

Figure 3.8 The combination of the four sets for Soil 2 ......................................................44



www.manaraa.com

xvi 
 

Figure 3.9 Relative gypsum content vs. real time for different ground materials .............47 

Figure 3.10 Gypsum concentration in pure gypsum vs. EC reading .................................49 

Figure 3.11 Gypsum concentration in Soil 1 vs. EC reading.............................................50 

Figure 3.12 Gypsum concentration in Soil 2 vs. EC reading.............................................51 

Figure 3.13 Collapse potential for Soil 1 ...........................................................................53 

Figure 3.14 Collapse potential for Soil 2 ...........................................................................54 

Figure 4.1 Effect of activated fly ash percent and curing time on  

volume change stability for high gypsum soil .......................................................64 

 

Figure 4.2 Effect of activated fly ash percent and curing time on  

volume change stability for medium gypsum soil .................................................65 

 

Figure 4.3 Mass loss in high gypsum N1 specimens cured for 7 days ..............................68 

Figure 4.4 Medium gypsum soil’s specimens treated with 30%  

activated fly ash and cured for 28 days ..................................................................69 

 

Figure 4.5 Change in mass for medium gypsum soil’s specimens  

treated with 30% activated fly ash and cured for 7, and 28 days...........................69 

 

Figure 4.6 The measured electrical conductivity for high gypsum  

soil cured for 7, and 28 days ..................................................................................71 

 

Figure 4.7 The measured electrical conductivity for medium gypsum  

soil cured for 7, and 28 days ..................................................................................71 

 

Figure 4.8 Effect of W-D cycles and curing time on cumulative  

gypsum dissolution / cycle for high gypsum soil...................................................75 

 

Figure 4.9 Effect of W-D cycles and curing time on cumulative  

gypsum dissolution / cycle for medium gypsum soil.............................................75 

 

Figure 5.1 Medium gypsum soil specimens treated with 6% asphalt emulsion ................84 

Figure 5.2 Volume change vs. cycles for high and medium gypsum soils ........................87 

Figure 5.3 Water content vs. cycles during wetting for high and  

medium gypsum soils ............................................................................................90 

 

Figure 5.4 Permeable porosity in high and medium gypsum soils ....................................92 



www.manaraa.com

xvii 
 

Figure 5.5 Gypsum dissolution / cycle for high and medium gypsum  

treated with asphalt emulsion soils ........................................................................95 

 

Figure 5.6 Gypsum dissolution/cycle for high and medium gypsum  

treated with cement ................................................................................................96 

 

Figure 5.7 Total gypsum dissolved in high and medium gypsum soils .............................98 

Figure 6.1 Coefficient of permeability for untreated high and medium gypsum ............104 

Figure 6.2 EC measurements for untreated high and medium gypsum soils...................105 

Figure 6.3 Gypsum dissolution for untreated high and medium gypsum soil .................106 

Figure 6.4 Mass loss due to gypsum dissolution for untreated high and  

medium gypsum soils ..........................................................................................107 

 

Figure 6.5 Baena and Toledo, 2014 model for a specific range of no and Ø ...................110 

Figure 6.6 Baena and Toledo, 2014 model for high and medium gypsum soils .............112 

Figure 6.7 The modified Baena and Toledo, 2014 model for a specific  

range of no and Ø .................................................................................................113 

 

Figure 6.8 Using the modified Baena and Toledo, 2014 model for  

high and medium gypsum soils............................................................................115 

 

Figure 6.9 Using the modified Baena and Toledo, 2014 model with  

Øp for high and medium gypsum soils .................................................................117 

 

Figure 6.10 Coefficient of permeability for high and medium gypsum  

soils treated with 6% asphalt emulsion ................................................................118 

 

Figure 6.11 EC for high and medium gypsum soils treated with 6%  

asphalt emulsion...................................................................................................119 

 

Figure 6.12 Gypsum dissolution for high gypsum soil treated with 6%  

asphalt emulsion...................................................................................................119 

 

Figure 6.13 Gypsum dissolution for medium gypsum soil treated with 6%  

asphalt emulsion...................................................................................................120 

 

Figure 6.14 Using the modified Baena and Toledo, 2014 model with Øp  

for trial one treated high and medium gypsum soils ............................................121 

 

Figure 6.15 Soil sample modeling, curing, and setup ......................................................123 



www.manaraa.com

xviii 
 

Figure 6.16 Coefficient of permeability for high and medium gypsum  

soil treated with 18% asphalt emulsion (flexible wall method) ...........................123 

 

Figure 6.17 EC for high and medium gypsum soil treated with 18%  

asphalt emulsion (flexible wall method) ..............................................................124 

 

Figure 6.18 Gypsum dissolution for high gypsum soil treated with  

18% asphalt emulsion (flexible wall method) .....................................................125 

 

Figure 6.19 Gypsum dissolution for medium gypsum soil treated  

with 18% asphalt emulsion (flexible wall method) .............................................125 

 

Figure 6.20 Using the modified Baena and Toledo, 2014 model with  

Øp for trial two treated high and medium gypsum soils ......................................127 

 

Figure 7.1 UCS for high gypsum soil specimen treated with 30%  

activated fly ash and cured for 28 days ................................................................132 

 

Figure 7.2 UCS for medium gypsum soil specimen treated with 20%  

activated fly ash and cured for 28 days ................................................................133 

 

Figure 7.3 UCS for medium gypsum soil specimen treated with 30%  

activated fly ash and cured for 7 and 28 days ......................................................133 

 

Figure 7.4 UCS for high gypsum soil’s specimens treated with asphalt  

emulsion ...............................................................................................................136 

 

Figure 7.5 UCS for medium gypsum soil’s specimens treated with  

asphalt emulsion...................................................................................................136 

 

Figure 7.6 UCS failure mode for high and medium gypsum soils’  

specimens treated with asphalt emulsion .............................................................137 

 

Figure 7.7 UCS failure mode for high and medium gypsum soils’  

specimens treated with Portland cement ..............................................................141 

 

   



www.manaraa.com

1 
 

Chapter 1 

Introduction 

Soil with gypsum has been found in many countries in different continents: 

Africa, southern and central Asia, Europe, and North America (FAO 1990). Figure 1.1 

shows the global distribution of soil with gypsum. In the U.S., soils with gypsum have 

been identified in the western part of the continent, which has been classified as an arid 

and semi-arid region (Pearson et al. 2015). In Iraq, which has a low rate of precipitation, 

soils with gypsum represent the highest percentage of soils in all Iraqi regions (Buringh 

1960; Porta 1998; Taha et al. 2008; Al-Layla and Al-Saffar 2014).  

The engineering behavior of gypsum soils is highly related to seasonal changes, 

specifically the wetting and drying cycles (Buringh 1960; Porta 1998; Fattah et al. 2008; 

Fattah et al. 2012; Awn 2011; Khattab and Hussein 2012; Alateya 2013; Razouki and 

Salem 2014; Salih, 2013).  

 

Figure 1.1 Global distribution of soil with gypsum  

(Boyadgiev and Verheye, 1996). 
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1.1 Problem statement  

Soils containing gypsum have attracted the attention of civil engineers due to the 

damage that can be caused to infrastructures supported on these soils, including light 

weight structures (e.g., roads) and heavy structures (e.g., dams) (Porta 1998; Taha et al., 

2008; Fattah et al., 2008; Fattah et al., 2013). For example, the presence of gypsum karst 

led to the development of cavities and subsequent collapses under roads and bridges In 

Northern England (Cooper and Saunders 2002).  

The primary issues with these soils are high solubility, compressibility, and 

collapsibility. The solubility (dissolution) of gypsum within the soil, due to water flow, 

can lead to increases in pore size and volume. This phenomenon, coupled with the 

applied structural loads, increases the probability of cavity creation that can accelerate 

soil compressibility collapsibility (Cooper and Saunders 2002; Poch et al., 1998). Soils 

with a higher coefficient of permeability, such as sands, are particularly susceptible to 

gypsum dissolution. 

Gypsum soils can be stabilized with chemical additives to control dissolution. In 

this dissertation, the effects of different additives on sands with medium to high gypsum 

contents are investigated. The additives that were selected were asphalt emulsion, 

activated fly ash, and Portland cement, which was used as a control additive.  

1.2 Research questions 

This study is intended to answer the following research questions: 

1- How can gypsum sands be stabilized with chemical additives, such as asphalt 

emulsion and activated fly ash, to control volume changes within the range of ±2.5% 

and mass losses of less than 7% when exposed to repeated wetting and drying? 
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2- How do the amounts and types of chemical additives, such as asphalt emulsion and 

activated fly ash, affect the amount of gypsum that dissolves in gypsum sands 

exposed to repeated wetting and drying? 

3- How does repeated wetting and drying of gypsum sands treated with increasing 

amounts of asphalt emulsion change the permeable porosity? 

4- What are the effects of gypsum content and gypsum dissolution on the coefficient of 

permeability of untreated and treated gypsum sands exposed to continuous water 

flow, and how well can changes in the coefficient of permeability be predicted? 

5- How will continuous flow affect the amount and rate of gypsum dissolution for 

medium and high gypsum sands that are treated with asphalt emulsion? 

6- What is the effect of repeated wetting and drying on the relationship between gypsum 

content and unconfined compressive strength of gypsum sands treated with asphalt 

emulsion and activated fly ash? 

1.3 Dissertation structure 

This research has been divided into four different objectives. Each objective is 

addressed in a separate chapter.  

Chapters 2 and 3 discuss prior work that has been done to classify gypsum soils 

and estimate gypsum content, along with all the materials and equipment that have been 

used to support this research. 

In Chapter 4, which covers the first objective, the use of Class F activated fly ash 

as an additive to stabilize two gypsum sands was studied. This study included volume 

stability, mass loss, and gypsum dissolution through wetting-drying cycles, and the effect 

of these cycles on the unconfined compressive strength of treated specimens. 
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The second objective is discussed in Chapter 5. This objective investigates the 

effect of static water during wetting-drying cycles on the dissolution of gypsum for soils 

specimens were treated with asphalt emulsion as a stabilizer. Volume changes, water 

content, permeable porosity, and mass loss are also presented in this chapter.  

The effect of continuous water flow was evaluated on untreated specimens and 

specimens stabilized with asphalt emulsion. The constant head permeability test was used 

to measure the coefficient of permeability, and the leachate was collected to measure the 

amount of dissolved gypsum with time. These results are presented in Chapter 6. As part 

of the third objective.  

Chapter 7 covers the fourth objective, which compares the unconfined 

compressive strength for specimens treated with the three different additives: asphalt 

emulsion, activated fly ash, and Portland cement.  

Chapter 8 provides the conclusions and recommendations for future research, 

based on the findings of this study.



www.manaraa.com

5 
 

Chapter 2 

Background 

2.1 Gypsum in soil  

Soils with gypsum as a component are found in arid and semi-aired regions 

around the world. Gypsum is found in these soils in the form of hydrated calcium sulfate 

(CaSO4.2H2O) (Buringh 1960; Cooper and Saunders 2002; Herrero et al. 2009; Porta 

1998). Gypseous (Gypsiferous, Gypsosols, Gypsic) soil was discovered by German soil 

scientist, W. Knop in 1871. At that time, he classified it as a sulfate soil, (genus gypsic 

soils) (Boyadgiev and Verheye 1996). 

Gypsum, or dihydrate calcium sulfate, (CaSO4.2H2O), is one of the five solid 

phases for the calcium sulfate system CaSO4-H2O. The second phase is basanite (plaster 

of Paris), which is known as hemihydrate calcium sulfate (CaSO4.0.5H2O). The other 

phases are anhydrate I (α-CaSO4), anhydrate II (natural anhydrate β-CaSO4), and 

anhydrate III (soluble anhydrate γ-CaSO4).  

Gypsum is the most available phase of calcium sulfate in soil, compared to 

hemihydrate, which is very rare in soil because it will transform to gypsum in the 

presence of water or humidity at atmospheric pressure. The anhydrate was found in deep 

deposits with gypsum, in the cap rocks of salt domes, and in ancient marine evaporate 

deposits (Casby-Horton et al. 2015).  



www.manaraa.com

6 
 

The arrangement of the CaSO4-H2O crystalline structure consists of chains of 

alternating calcium atoms and sulfates tetrahedra coordinated through oxygen atoms, as 

listed by Charola et.al. 2007 and cited by Casby-Horton et al. 2015. Both gypsum and 

hemihydrate have a sheet of water molecules coordinated between chains of calcium and 

sulfates, as shown in (Figure 2.1).  

 

 

 

 

 

 

 

While in the anhydrate, the crystal is most closely packed, as well as most dense, 

provides the most stability and the lowest reactivity between all the CaSO4-H2O phases 

(Casby-Horton et al. 2015). 

Gypsum, when it is dry from free moisture, contains approximately 21% 

chemically bound water in its crystal matrix. To evaporate the free moisture, gypsum 

samples must be heated at 40ºC for 24 hrs. (Thomas 2002). 

2.2 Classification of gypsum in soil 

Buringh (1960) classified gypsum in soil as two types: primary gypsum and 

secondary gypsum.  

Figure 2.1 Gypsum crystal structure (Chen 2006 and cited by Yu et al. 2015). 
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c. Gypsum rock from Aust Cliff 

Gypsum (UK). 

a. Gypseous soil layers with  

gypsum rock from  

Sulaimani /Iraq.  

b. Gypseous soil from Aust 

Cliff Gypsum (UK). 

Figure 2.2 Gypseous soils components from two different regions in the  

world (Salih 2013). 

Primary gypsum represents the gypsum rocks that typically form the bed-rock of 

the soil with gypsum. Secondary gypsum represents the other forms of gypsum inside the 

soil. There are two types of secondary gypsum: the crystalline and the amorphous 

gypsum.  

In many cases, the crystalline gypsum appears as a formation called selenite, 

which are colorless and transparent monoclinic crystals. Figure 2.2 shows soil with 

gypsum components from two different regions in the world. 

 

 

 

 

 

 

 

 

 

 

The size of gypsum in the soil covers a large range, from the size of the parent 

rocks to the size of gypsum crystals. Therefore, the gypsum inside the soil profile can be 

recognized by the naked eye to scanning by the electronic microscope.  
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The gypsum crystals were classified into three groups, based on size: spar (> 20 

µm), microspar (5-20 µm), and micrite (< 5 µm) (Jafarzadeh and Burnham 1992). 

In general, the presence of gypsum in soil comes from gypsum deposits, which 

formed geologically, and secondary gypsum, which migrated and accumulated inside the 

soil profile. 

2.2.1 Factors controlled gypsum migration inside soil profile 

Secondary gypsum migration in the soil is controlled by the following factors:  

a- The irrigation of crops.  

b- The movement of the water inside the soil profile. 

c- Variation of the water table during seasonal changes.  

d- Movement of the surface water.  

These factors will increase the weathering rate of the parent gypsum rock, thus 

relocating gypsum inside the soil profile and close to the ground surface (FAO 1990; 

Salih 2013). 

Gypsum content in these soils varies from less than 1% to almost 100%. 

Therefore, they have been classified, per their gypsum content, as gypsiferous soil when 

the gypsum content < 40%, and gypseous soils when the gypsum content > 40% (Pearson 

et al. 2015). To identify these types of soils, the gypsum content must be calculated first. 

2.3 Classification methods for soil with gypsum  

There are different methods that are used to classify the soils, and each method 

consists of two parts. The first part is the sieve analysis, which is used to classify the soil 

particle sizes that range from gravel to sand (e.g. 75 to 0.075 mm). The next part is the 

hydrometer analysis, which is used to classify soil particles that are smaller than sand (< 

0.075mm).  
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The most difficult soil particles to classify in soil with gypsum are those whose 

sizes range between sand and clay sized particles. In general, gypsum particle sizes fall in 

this range. Therefore, the part of the soil classification process that needs to be modified 

is the hydrometer analysis. 

In the published literature, different methods were used to classify gypseous soils. 

Some of these methods used ordinary classification methods to classify these soils. These 

methods were supported by saying that gypsum between the soil particles is considered to 

be part of the soil structure, and if it is removed or modified during testing, the soil will 

lose one of its components. Fattah et al. (2008) said that gypsum has a big impact on the 

physical properties of the soil. Therefore, using any method to remove it or to prevent it 

from dissolving during classification will affect these properties.     

Other researchers preferred to dissolve and remove the gypsum from the soil 

before classification. They argued that the presence of gypsum will result in a soil 

classification that does not represent the true grain size distribution.  

AlNouri and Saleam (1994) used the Ethylenedinitrilotetraacetic acid (EDTA) 

solution method (Bodine and Fernalld, 1973 method) to remove the gypsum from the soil 

to prevent flocculation during the hydrometer test.    

The last group used specific methods to classify soil without gypsum dissolution. 

Using water during the hydrometer test will dissolve the gypsum, which will result in a 

classification that does not represent the soil. Therefore, other coating chemicals or other 

liquids have been used during the hydrometer test.  

Razouki et al. (2012) evaluated the problem of flocculation during the hydrometer 

test due to the presence of calcium ions, which come from gypsum.  
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For this reason, they used barium sulfate (BaSO4) and barium chloride (BaCl2) 

(Hesse, 1974 method, listed in Razouki et al., 2012) to coat the gypsum particles prior to 

the hydrometer test. 

2.3.1 Standard soil classification systems 

In general, there are many systems that can be used to classify soils. The most 

common system is the Unified Soil Classification System (USCS, ASTM D2487-10). 

This standard is used to classify all the soils and rocks according to particle size 

distribution, liquid limits, and plastic limits.  

However, many ASTM standards also have been used to classify soils, such as 

ASTM D422-63. British standards are also used to classify different types of soils and 

rocks. These standards include (BS 1377:1990 and BS 5930:1999). The American 

Association of State Highway and Transportation Officials (AASHTO) also has a system 

that is used to classify soils that re related to roadways construction. 

2.3.2 Classifying soil after dissolving and removing the gypsum 

Various methods have been used to remove gypsum from the soil. For example, 

the EDTA method, (Bodine and Fernald, 1973), is performed by mixing the soil with a 

solvent produced by boiling ethylenedinitrilotetraacetic acid (EDTA) at a pH of 10-12. 

The Dilute hydrochloric acid (HCl) method (Loveday, 1974 listed in; Bashour and 

Sayegh, 2007) has also been used to remove the gypsum from soil.  

This method is used on soils with visible gypsum crystals. This method is 

performed by adding 25 ml of 2M hydrochloric acid (HCl) to 25 g air-dried soil in a 

flask.  
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The process also requires the addition of 5 drops of hydrogen peroxide (H2O2), 

500 ml of distilled water, 5 ml of 1M sodium hydroxide (NaOH), and 10% sodium-

hexametaphosphate. After this process is completed, all the gypsum will be removed 

from the solution (Bashour and Sayegh 2007). 

2.3.3 Classification after coating the gypsum to prevent dissolution / flocculation of 

gypsum particles prior to standard testing 

The barium sulfate (BaSO4) and barium chloride (BaCl2) method, (Hesse, 1974) 

uses soil samples that are treated with barium chloride (BaCl2), followed by barium 

sulfate (BaSO4) as a coating, to prevent the dissolution of gypsum particles before testing 

(Razouki et al., 2012).  

The Kerosene method was used by Fattah et al. (2008) which relies on the 

procedure outlined by Bowles (1978). The USCS system is used to classify soils, but 

kerosene is used instead of water during the grain size distribution analysis to prevent 

gypsum dissolution. 

The last method is the ethanol: water solution method, which is explained by 

Pearson et al. (2015). This method uses a solution of 7:3 ethanol-to-water ratio during its 

grain size distribution analysis. 

Table 2.1 provides various factors that must be taken into consideration when 

choosing the best classification method. From this table, gypsum removing methods are 

better suited, because the test time is reasonable and not as complex as the gypsum 

coating methods. Moreover, these methods have a lower cost than the coating methods. 
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Table 2.1 Soil classification methods evaluation 

 

2.4 Gypsum content of soil  

Many methods have been used to calculate the gypsum content. In general, they 

can be classified as chemical and dehydration methods.  

There are many types of chemical methods that have been used to calculate the 

gypsum content in the soil. The standard SO4 method was developed by the Soil 

Conservation Service in 1972 (method 6L1b, and the corrected method 6F1b, 1972). In 

this method, the gypsum content is calculated by measuring the total SO4 in the water/soil 

solution after dissolving all the gypsum in the soil (Nelson et al. 1978).  

The British standard method calculates the gypsum from the sulfate content by 

multiplying this content with a constant factor (BS 1377:1990 part 3, 1990). Another 

method, called the acetone method, uses acetone to precipitate the gypsum from the 

filtered water/soil solution.  

This method requires a variety of chemicals and several sensitive devices (NRCS, 

USDA report No.42, 2014). Concisely, the chemical methods are complicated and 

require sensitive devices, along with different types of chemicals.  

On the other hand, the dehydration methods are simple and do not require highly 

sensitive equipment. These methods performed by heating the soil to a temperature that 

ensures the evaporation of the two water molecules in the gypsum crystal.  

Method Complexity Cost Test 

time 

Accuracy Chemicals 

used 

Ordinary Low Low Short Low Non 

Gypsum removing Medium Medium Medium Medium High 

Gypsum coating High High Long Medium High 
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By calculating the percentage change in weight before and after heating, the 

gypsum content can be determined. Gypsum dehydration has been investigated 

extensively during the last two decades due to the use of gypsum as one of the 

components in gypsum board and wood or steel studs, which are used as walls, floors, 

and ceilings in different types of buildings. Although these materials are used to isolate 

different spaces, they also work as fire resistance.  

The gypsum dehydration process will delay or slow down fire, which provides 

more time for evacuation. The additional time for evacuation occurs because the transfer 

of heat inside these materials is delayed until the gypsum dehydration process is 

completed (Kontogeorgos et al., 2011; Kolaitis and Founti 2013). 

Gypsum, when it is dry from free moisture, has approximately 21% chemically 

bound water in the crystal matrix. To evaporate the free moisture, gypsum samples must 

be heated in 40ºC for 24 hrs. (Thomas 2002). Gypsum dehydration or calcination occurs 

at temperatures ranging from 80ºC to 250ºC (Kolaitis and Founti 2013). Depending on 

the vapor pressure, which has a significant effect on this process, gypsum during 

dehydration will transfer into other CaSO4-H2O phases.  

When the vapor pressure is close to zero, the water vapor can escape freely, and 

the gypsum will start to dehydrate. van der Heijden et al. (2011) showed that the 

chemically bound gypsum water starts to evaporate at 100ºC, and the anhydrate will be 

formed. 

 𝐶𝑎𝑆𝑂4. 2𝐻2𝑂(𝑠) + ∆𝐻𝑑𝑒ℎ𝑦𝑑  →  𝐶𝑎𝑆𝑂4(𝑠) +  2𝐻2𝑂(𝑔)                   (Eq. 2.1) 
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This reaction needs a total energy of 625 kJ/kg of dry gypsum. 150 kJ/kg is 

needed to separate the water molecules from gypsum crystal structure, and the remaining 

energy (475 kJ/kg) is needed to evaporate the released water. This reaction will occur 

between 90ºC to 150ºC. When the water vapor is not allowed to escape freely (i.e. a 

closed system), then two endothermic decomposition reactions will occur during gypsum 

dehydration (Kolaitis and Founti 2013; van der Heijden et al., 2011). 

Reaction One:  

𝐶𝑎𝑆𝑂4. 2𝐻2𝑂 + ∆𝐻𝑑𝑒ℎ𝑦𝑑,1  →  𝐶𝑎𝑆𝑂4.
1

2
𝐻2𝑂 +  

3

2
𝐻2𝑂                      (Eq. 2.2) 

Reaction Two: 

𝐶𝑎𝑆𝑂4.
1

2
𝐻2𝑂 + ∆𝐻𝑑𝑒ℎ𝑦𝑑,2  →  𝐶𝑎𝑆𝑂4 +  

1

2
𝐻2𝑂                                 (Eq. 2.3) 

During the first step (Reaction One), gypsum is partially dehydrated and loses 

75% of the chemically bound water to form the hemihydrate, and the energy used during 

this step is approximately 450 kJ/kg. In the second step (Reaction Two), the hemihydrate 

dehydrates and loses its remaining water to form type III anhydrate.  

The temperatures that lead to these reactions are highly dependent on the vapor 

pressure (van der Heijden et al. 2011; Kolaitis and Founti 2013). van der Heijden et al. 

(2011) showed that both reactions occurred in a range of temperatures between 125ºC 

and 225ºC. Meanwhile, Kolaitis and Founti (2013) showed that Reaction One occurred at 

a temperature of 156ºC, and Reaction Two occurred at a temperature of 192ºC. At a 

temperature of 400ºC, the molecular structure of the soluble crystal (anhydrite III) will 

change and undergo additional decomposition reactions (Kontogeorgos and Founti 2012).  

Therefore, any dehydration process that is used to find the gypsum content must be below 

this temperature.  
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Other factors that affect gypsum dehydration are time and gypsum grain size. 

Khalil (1982) found that gypsum dehydration increases with an increase in time and 

temperature, along with a reduction in the gypsum grain size. Moreover, for a constant 

gypsum size, the dehydration reaction at 160ºC is double of the 100ºC and four times the 

reaction at 70ºC.  

From the author’s results, it can be inferred that, at a temperature ≥ 140ºC and 

heating duration ≥ 5 hrs., the gypsum content calculated for different pure gypsum grain 

sizes samples was ≥ 98 %. 

In his study, Khalil used five dehydration temperatures (100, 120, 140, 160, and 

180 ºC), to calculate the dehydrated gypsum fraction (α) for seven gypsum samples with 

sizes of 0.088, 0.0965, 0.127, 0.222, 0.649, 1.204, and 2.109 mm for dehydration times of 

0.25, 0.5, 1, 2, 5, and 10 hrs. The results showed that the gypsum particles need to be as 

fine as possible to calculate the gypsum content using the shortest period.  

Moreover, from Table 2.2 , which shows the results for 0.25, 0.5, and 1 hr. 

dehydration times for the particle sizes of 0.088 and 2.109 mm, a dehydration time of 

0.25 hr. (15 min.) was not enough to dehydrate the gypsum, even for the finest gypsum 

size, at the highest dehydration temperature. The dehydrated gypsum for the gypsum 

particle with a size of 0.088 mm and a dehydration temperature of 180º C for 0.25 hr. 

dehydration time was 98.87 %).  

However, for the same size, the dehydration time of 0.5 hr. (30 min.) was 

acceptable because the dehydrated gypsum at a temperature of 180ºC was 99.07%. 

However, it did not effectively estimate the dehydrated gypsum for sizes larger than 

0.222 mm. 
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Table 2.2 Results from Khalil (1982)  

Gypsum particle size of 0.088 mm.                           Gypsum particle size of 2.109 mm        

 

Therefore, the results provided by Khalil (1982) suggested that for all the seven 

gypsum particle sizes, a dehydrated temperature of 180 ºC and a dehydration time of 1 

hour or more in a well-ventilated oven (zero vapor pressure) will ensure the dehydration 

of all the gypsum particles. 

As a result, from all these studies, calculating gypsum content using dehydration 

method should be done with zero vapor pressure to ensure that all the gypsum will 

transfer directly to the anhydrite III (Eq. 1). If any vapor pressure is initiated during the 

dehydration, the two reactions (Eq. 2 and 3) will occur, which will give misleading 

gypsum content results.         

The temperature and the duration of heating vary for different dehydration 

methods. Nelson et al. (1978) method used 105º C and a heating duration of 24 hrs. Al-

Mufty and Nashat (2000) method (listed in Fattah et al. 2012), used 110º C, with the 

duration depending on when the weight reached a constant value after heating. The 

OMRAN (2016) method heated the soil at 150º C for 15 min. Table 2.3 shows the details 

of these three methods. 

 

 

Temp. (ºC) 
Time (hr.) / α 

0.25 0.5 1 

100 2.5 7.83 40.46 

120 23.58 51.66 90.12 

140 62.67 80.04 97.85 

160 84.39 99.12 99.12 

180 98.87 99.07 99.22 

Temp. (ºC) 
Time (hr.) / α 

0.25 0.5 1 

100 0.59 1.08 7.79 

120 11.84 37.18 67.17 

140 38.16 69.47 93.44 

160 48.09 88.16 94.18 

180 90.07 96.72 98.83 
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Table 2.3 The dehydration methods    

 

2.5  Problems related to gypsum in soil 

2.5.1 Gypsum dissolution 

Gypsum dissolution is related to its solubility in water. The gypsum solubility rate 

at 25ºC and a pressure of 0.101 MPa in pure water is approximately 2.6 g/L (Eswaran and 

Zi-Tong 1991). When gypsum is in contact with water, it will dissolve into calcium ions 

and sulfate ions (Fattah et al. 2008). However, the solubility of gypsum in the soil is 

controlled by many factors as follows: 

2.5.1.1 Factors affect on gypsum solubility in soil with gypsum 

a- Particle size: Khan (1994) found that the solubility of gypsum in soils is dependent 

on the particle size. He concluded that the solubility would increase with a reduction 

in the particle size. He attributed this reduction to the increase in the total surface area 

with the reduction of the particle size, which will result in an increase in gypsum 

solubility in water.  

Porta (1998) concluded that gypsum solubility will be low when the gypsum crystals 

are relatively large. Sonnenfeld (1984), cited by Salih (2013), reported that maximum 

gypsum solubility will occur when the gypsum crystals size between 0.2-0.5 μm. 

No Dehydration 

method 

Soil drying Soil heating 

Temp Time Device Temp. Time Device 

1 Nelson et al. 

(1978) 

Room 48 hrs. desiccator 105º 24 hrs. Oven 

2 Al-Mufty & 

Nashat (2000) 

45ºC Constant 

Weight 

Oven 110ºC Constant 

Weight 

Oven 

3 Omran (2016) 70ºC 45 min. Oven 150ºC 15 min. Oven 
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Figure 2.3 The solubility of gypsum, hemihydrate, and anhydrite with  

temperature (Azimi et al. 2007 cited by Casby-Horton et al. 2015). 

 

b- Dilution ratio: Khan (1994) also found that the solubility of gypsum increases with 

increase in the soil: water ratio because more gypsum will dissolve due to this 

increase. Van Alphen and Romero (1971), cited by Kuttah and Sato (2015), found 

that a dilution ratio of 1:1 will only dissolve 0.25 % of the gypsum. Therefore, this 

ratio must be very high to dissolve all the gypsum in the soil.  

They also reported that this ratio is related to the gypsum content, and they gave an 

example of soil with 40% gypsum content, for this soil and to dissolve all the 

gypsum, the dilution ratio must be greater than 1:160. 

c- Temperature: Casby-Horton et al. (2015) reported that at a temperature greater than 

42º C, gypsum will be less soluble than at a temperature less than 42º C, as shown in 

Figure 2.3. James and Lupton (1978), cited by Kuttah and Sato (2015), concluded that 

the gypsum solubility rate increases by 3.25 times when the temperature is increased 

from 5º C to 23º C. 
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d- Other salts in soil: In pure water, the solubility of gypsum is approximately 2.6 

kg/m3 (i.e.: 2.6 g/l at 25º C and a pressure of 0.101 MPa), but the presence of other 

salts in soil will change this value (Doner and Lynn 1989; and McFadden et al. 1991, 

cited by Boyadgiev and Verheye 1996). 

The USDA Soil Survey Investigations Report No. 42, (2014) shows that the solubility 

of NaCl salt in water at 20º C is 360 g/l, which is very high compared to the solubility 

of gypsum. Buringh (1960) said that the solubility of gypsum in pure water is 

relatively low compared to the solubility of other salts in the soil. Therefore, in many 

cases, the water inside the soil is considered to be saline due to the high concentration 

of salts other than gypsum.  

He classified magnesium chloride, sodium chloride, calcium chloride, magnesium 

sulfate and sodium sulfate as very high soluble salts, and he classified calcium 

sulfate, magnesium carbonate, and calcium carbonate as low soluble salts in soils.  

However, he also explained that the water in the soil has a different mixture of salts 

with different concentrations because each type is related to the availability and the 

concentration of other salts in the soil.  

Barzanji (1973), cited by Fattah et al. (2008) listed that the solubility of gypsum in 

the soil will increase if the water has a concentration of sodium chloride and 

magnesium chloride, but it will be decreased if calcium bicarbonate is in the soil. Al-

Neami (2006) and Nasir (2008), cited by Karim et al. (2012), stated that the solubility 

of gypsum is controlled by the chemical properties of the seepage water in the soil.  
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Hardie (1967) and López et al. (1999), cited by Morillas et al. (2009), said that after 

submerging gypseous soil samples in NaCl solution, the solubility of gypsum was 

three times the normal value.  

Elrashidi et al. (2007) stated that due to the high solubility of other salts in soils, they 

need to be considered with gypsum when evaluating the subsidence problem of soils. 

The USDA Soil Survey Investigations Report No. 42 (2014) lists that the solubility of 

gypsum in saline water is approximately 20-50 meq/l (milliequivalents/liter). 

Lagerwerff et al. (1965) cited by Porta (1998), stated that in instances where Ca+2 or 

SO4 -2 ions are available in the soil from a source other than gypsum, the solubility of 

gypsum will be reduced.  

e- Flow Rate: Kemper et al. (1975), cited by Fattah et al. (2008), showed that the 

solubility of gypsum is related to the flow rate of water inside the soil. 

f- Soil Permeability: Al-Neami (2006) and Nasir (2008), cited by Karim et al. (2012), 

stated that soil permeability will affect gypsum solubility because it will control the 

amount of water inside the soil, along with its movement.  

The relation between soil permeability and gypsum solubility is complicated. Kuttah 

and Sato (2015) mentioned that soil permeability will increase with the increase of 

gypsum content only when the gypsum particles are larger than the soil particles 

because the solubility of gypsum particles will increase the flow of water in the soil.  

On the other hand, soil permeability will decrease with an increase in gypsum content 

when the gypsum particles are smaller than the soil particles because the gypsum 

particles will close the paths of water in the soil. 
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g- Applied pressure: Freyer and Voigt (2003) pointed out that the solubility of all 

CaSO4 salts will increase with an increase in the applied pressure.  

h- pH of soil: The influence of the pH on gypsum solubility is not clear. Subhi, (1987), 

cited by Kuttah and Sato (2015), found that acidity will increase the solubility of 

many salts in the soil. Shlash and Al-Rawi (1994), cited by Kuttah and Sato (2015), 

reported that treating gypsiferous soils with different concentrations of nitric acid 

(HNO3) and hydrochloric acid (HCl) will reduce the presence of many of the salts in 

the soil, such as CaSO4.  

2.5.2 Soil compressibility 

“Soil compressibility is the capacity of soil to decrease in volume when subjected 

to a mechanical load. The process that describes the decrease in soil volume (soil 

densification) under an external applied load is called compression. An externally applied 

load can be in the form of a static load or a dynamic load.” (Gupta et al. 2002) 

Compression occurs in soil due to: 

a- Air and water exclusion from void space. 

b- Soil particles rearrangement. 

c- Compression and deformation solid particles and soil aggregate. 

d- Liquid and gas compression inside the soil voids. (Gupta et al., 2002)    

In instances where gypsum is present in the soil and with the application of 

external loads, the soil will experience compression due to the crushing and 

rearrangement of gypsum particles, particularly larger particles (Salih 2013).  
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The factor that has been used in many studies to describe soil compressibility is 

the compression index (cc), due to its direct relationship to consolidation settlement in 

soils with gypsum, which, in most cases,  are normally consolidated (NC) soil.  

2.5.3 Soil collapse potential 

Collapse potential is the additional settlement of a foundation, which takes place 

due to the wetting of soil without any increase in the applied loads, as described by 

Jinnings and Knight (1975). 

They used two different procedures to calculate the collapse potential of soil suing 

odometer test. The first procedure was the single odometer test, a test in which the soil 

will be consolidated by using the traditional consolidation test, but the sample is not 

saturated until the end of the application of 200 kPa of consolidation pressure. After that, 

the water is added to saturate the sample under the same 200 kPa pressure, and the 

consolidation test proceeds until the end, as shown in Figure 2.4. 

 

  

 

 

 

 

 

 

 

 

Figure 2.4 Single odometer test (Jinnings and Knight 1975). 
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Figure 2.5 Double odometer test (Jinnings and Knight 1975). 

 

The other procedure is the double odometer test. In this test, two odometer tests 

are done on two samples with the same properties, but one is tested under natural 

condition (without saturation), the second sample is tested under saturation conditions, as 

shown in Figure 2.5.  

 

 

 

 

 

 

 

 

 

 

The deference between the two procedures is the collapse potential. In the single 

odometer test, the collapse potential is calculated only under 200 kPa of pressure. 

However, with the second procedure, it can be calculated under any consolidation 

pressure. The collapse potential equation: (Jinnings and Knight 1975) 

𝐶𝑃 =  
∆𝑒

1+𝑒𝑜
× 100                                                        (Eq. 2.4) 

They classified soils according to collapse potential as shown in Table 2.4. As 

shown in several studies, the collapse potential in soil with gypsum, is highly related to 

the dissolution of gypsum particles. Mitigating or preventing gypsum dissolution has a 

big impact in the reduction of the collapse potential.                                 
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Table 2.4 Soil classification  

according to collapse potential. 

 

 

 

 

2.5.4 Structural problems related to gypsum presence in soil 

The main problems in structures caused by the presence of gypsum in soil can be 

classified as follows: 

a- Subsidence: The presence of gypsum in soil can cause severe subsidence for 

structures that are built above this type of soil. This problem is related to the 

solubility of gypsum in water with time, which is approximately 2.6 g/L.  

If the subsidence in soil is relatively high, sinkholes may occur (Elrashidi et al. 2007).  

Since the solubility of gypsum is highly related to gypsum content, it has been found 

that gypsum content as low as 1.5% can cause subsidence problems (Nelson 1982). 

The presence of gypsum as deep as 5 m in the soil keeps this problem in soil due to 

the movement of water inside the soil from the irrigation system, leakage in water 

pipes, rainfall, or any source of water infiltration within the soil (Eswaran and Zi-

Tong 1991). 

b- Piping: Piping in soil is a process of dissolving the salts in soil due to moving water, 

which results in the creation of cavities over time (Maatooq et al., 2014).  

CP Severity 

0-1% No Problem 

1-5% Moderate Trouble 

5-10% Trouble 

10-20% Severe Trouble 

>20% Very Sever Trouble 
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By observing deformed buildings in Erevan area in Armenia, Arutyunyan and 

Manukyan (1982) found that ground water movement caused dissolution and removal 

of gypsum from the soil over time.  

This phenomenon may result in collapse problems in many buildings. Moreover, 

from site investigations, they detected that the piping problem began at several sites 

with gypsum content as low as 5%.  

Piping related to gypsum rocks dissolution is the main reason behind the occurrence 

of many sinkholes in the downstream of the Mosul dam in Iraq, as described by 

Kelley et al. (2007), and Adamo and Al-Ansari (2016). 

c- Corrosion: Two types of corrosion occur in structures built on soil with gypsum. The 

sulfate ions affect the main components of the structure (i.e., the reinforcement and 

the concrete). 

Reinforcement corrosion: In a 2009 report by the National Highway Institute (NHI) 

, they described the process of metal corrosion as the result of electrical current 

moving from the anodic area to the cathodic area in the soil (the electrolyte).  

This process will result in the corrosion of the anodic area due to the transportation of 

the ions from the metal to the electrolyte. They stated that this problem will happen in 

soils with high salts concentrations, particularly sulfates, chlorides, and bicarbonates, 

which make the soil highly acidic or alkaline.  

Concrete corrosion: The corrosion of the concrete will result in concrete decay over 

time through the following reactions that are related to the sulfate ions in gypsum: 
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• The reaction between the sulfate ion from gypsum and the hydrated calcium 

aluminate in the concrete to create ettringite [Ca6Al2(SO4)3(OH)12·26H2O)] 

(Shanahan and Zayed 2007, cited by Herrero et al., 2009). 

• The reaction between the sulfate ion and the calcium hydroxide during the 

process of concrete hydration to form gypsum (Tian and Cohen 2000, cited by 

Herrero et al., 2009). 

• The creation of thaumasite [Ca3Si(CO3)(SO4)(OH)6·12(H2O)] if the carbonate 

ion is available due to the reaction between this ion and the sulfate ion 

(Crammond 2002, cited by Herrero et al., 2009). 

• The crystallization process of the sulfate ion in the porous media to create the 

mirabilite or the sodium sulfate heptahydrate (Hamilton et al. 2008, cited by 

Herrero et al. 2009).  

2.6 Traditional treatment when gypsum is encountered in soil  

The traditional approach for dealing with a construction site with gypsum in the 

soil is to replace it with another type of soil to a specific depth under the shallow 

foundations. In most cases, the borrowed materials are cheap, have good engineering 

properties, and are available close to the construction site. This process is governed by 

the following factors: 

• Soil type 

• Gypsum content 

• Gypsum particle size 

• Soil grain size distribution 

• Gypsum type (primary or secondary gypsum) 
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Foundations Area 

2-3m 

extension 

2-3m 

extension 

Excavation Area 

Figure 2.6 Excavation for traditional treatment for soil with gypsum. 

 

• Depth of the gypsum layer from the ground surface 

• Water table 

• Type of the structural loads 

• The judgment of the geotechnical engineering consultant  

All these data are collected from the site investigation, soil test, and the structural 

design. In most cases, when the soil properties are good, the gypsum content controls the 

decision to replace the soil.  

If the gypsum content is lower than 5%, then no replacement is needed. However, 

in many cases, this choice is not considered to be the best option, because several 

observations have shown that cracks and settlement occurs in buildings and houses that 

have been constructed on soils with gypsum content less than 5%. 

Therefore, many consulting engineers choose to replace the soil, even if the 

gypsum content is low. The steps to replace the soil are shown below: 

1. Excavate and remove natural soil from 2 to 3 m larger than the area, Figure 2.6. 

 

 

 

 

 

2. The depth of soil removal is controlled by the depth of the bearing capacity 

surface, which may reach up to 10 m. 
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3. In many cases, the natural soil will be compacted beneath the excavation level. 

4. Sub-base material (granular soil) will be added in layers and compacted to a field 

dry density about 95-98 % of the maximum dry density in the laboratory by the 

modified proctor method. 

5. These layers will be added until the required ground level is reached. 

6. The bearing capacity for these bed layers will no more than 200 kN/m2. 

7. Sulfate resistant concrete will be used for all foundations. 

8. All water and sewer pipes will be sealed to prevent any future leaks to infiltrate 

the soil. 

9. Septic tanks will be kept as far away from the building as possible. 

10. An apron will be built with a width no less than 2 m around the building to 

prevent surface water from infiltrating the foundation.     

2.7 Literature review of soil with gypsum treatment 

Different improvement techniques were used to modify the compressibility, 

collapse potential, and gypsum dissolution of different types of soils with gypsum. Fattah 

et al. (2012) used dynamic compaction to compact previously remolded samples of 

poorly graded sand with gypsum (SP – SM).  

They compacted the soil in 50 cm x 50 cm x 35 cm box with three different 

tamper weights (2, 3, and 5 kg). The number of blows ranged between 20 and 40 with 

drop heights of 35, 50, and 65 cm. They used an odometer test to find the compression 

index (Cc) before and after compaction.  

 



www.manaraa.com

29 
 

They concluded that twenty drops provided the best reduction in Cc for three 

different sandy soils with gypsum content of 27, 41.1, and 60.5 %. Moreover, they found 

that as the gypsum content increased, dynamic compaction had a significant impact to 

reduce the soil compressibility.  

After soaking the dynamically compacted samples, they showed a reduction in the 

void ratios by comparing them to samples that were not treated with dynamic 

compaction, which meant a reduction in soil collapse potential.  

The second study, which used the deep dynamic compaction (DDC) method in 

the field, was conducted by Al-Layla and Al-Saffar (2014). In this work, a tamper that 

weighed (2.4 metric tons) was used to compact a low plasticity silty clay gypsiferous soil 

(CL-ML) with gypsum content that ranged from 4.5 to 18.6%.  

They also used the odometer test to find the compression indices before and after 

modification. A range of Cc values for undisturbed samples before and after DDC 

treatment was provided. Before compaction, the range was 0.20 - 0.24, after compaction, 

the range was 0.084 - 0.100. 

Clinker additive was used by Al-Neami (2010) to modify a poorly graded 

gypseous sand (SP) with 40% gypsum content. The work was done by using different 

percentages of clinker (2, 4, and 6%) in remolded samples. The results showed that 4% 

clinker additive reduced the compression index, Cc, from 0.17 to 0.10.  

The same percentage provided a reduction of 73% in the collapse potential. Karim 

et al. (2012) used commercial bentonite and kaolinite to enhance the physical and 

mechanical properties of gypseous sandy soil with gypsum content of approximately 

50%.  
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For compacted samples at natural field density, they found that the compression 

index, Cc, was reduced from 0.149 before treatment to 0.118 after adding approximately 

10% of bentonite, and to 0.133 with 10% kaolinite. 

Fattah et al. (2013) used acrylate grout to treat four types of silty sand with 

gypsum content ranging from 18 – 72%. They found that this process had many effects, 

including increased shear strength, reducing soil compressibility, and reduced 

collapsibility. The reduction in soil compressibility was approximately 60 - 70 %.  

Awn (2011) used pre-wetting to reduce soil collapse potential and the foundation 

settlement for two types of low plasticity silty soils with gypsum contents of 50 and 70% 

by using a laboratory model with dimensions of 320 mm x  472 mm and a circular 

footing that was 50 mm in diameter.  

He found that after three cycles of wetting under applied constant stresses of 45 

kN/m2, and 100 kN/m2, a reduction in the S/B ratio (settlement / footing width) of 

approximately 63% was achieved for a soil sample with 50% gypsum content, and a 

reduction of 86% for a soil sample with 70% gypsum content sample. Also, for the soil 

with 70% gypsum content, the field study with the applied stress of 100 kN/m2 showed a 

reduction in the S/B ratio of approximately 90%. 

Alsafi et al. (2017) used activated fly ash to immobilize the gypsum in soil to 

improve its strength and to reduce its collapse potential. The target was to stabilize 

gypsiferous clayey sand with silt that has a gypsum content of 13%.  

The fly ash was activated with different Alkali activators, (NaOH and KOH) 

which have three different molarities of (8, 10, and 12M). All the treated samples were 

exposed to sulfate attack using MgSO4 solution.  
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Gypseous sandy soil Gypsiferous clayey soil 

Figure 2.7 Compression and swelling indices modification (Aziz and Ma 2011). 

After comparing the treated samples with samples treated with Portland cement 

and exposed to same conditions, the results showed that activating the fly ash with 12M 

of KOH and using 30% of the activated fly ash with the soil will provide the best 

reduction in the collapse potential and the coefficient of permeability. 

Fuel oil was used as a treatment for gypseous soils by Aziz and Ma (2011) by 

mixing it with two different types of soils: gypseous sandy soil with gypsum content of 

approximately 52%, and gypsiferous clayey soil with gypsum content of approximately 

27%.  

They found that mixing 8% of fuel oil with soil will result in many modifications, 

such as the reduction in soil compressibility. Figure 2.6 shows the reduction in both the 

soil compression index, Cc, and the swelling index, Cr, for both types of soil. 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

32 
 

Taha et al. (2008) treated poorly graded gypseous sandy soil (SP) which has 

gypsum content between 40 – 50 % by using different percentages of cut-back RC-70 (2, 

4, 6, and 8%). Two techniques have been used to add the asphalt: by injection and 

mixing. They found that mixing the asphalt with the soil provided the best result.  

Moreover, 6% asphalt provided the most improvement in the dry density, 

unconfined compression strength, and the shear strength parameters. The collapse 

potential decreased with an increase in the asphalt percentages.  
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Figure 3.1 Grain size distribution for Soil 1. 

Chapter 3  

Gypsum and Collapse Potential Measurements 

3.1 Gypsum content measurements  

Three different dehydration methods have been used to calculate the gypsum 

content for the following natural soils: 

- Soil 1 (S1): Lark series, which is a white gypseous sandy soil from the Barchan Dune 

in of New Mexico. 

- Soil 2 (S2): Hembrillo series, which is a brownish sandy soil with some roots and 

leaves. It is located at the northeastern end of the White Sands dune field in the New 

Mexico. Both soils were received from the Natural Resources Conservation Service 

(NRCS) office in Las Cruces, New Mexico. Figures 3.1 and 3.2 show the grain size 

distributions.  
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Figure 3.2 Grain size distribution for Soil 2. 

 

 

 

 

 

 

The results show that both soils are fine, poorly graded sand, according to the 

USCS classification. 

3.1.1 Al-Mufty and Nashat (2000) method 

For this method, the soil sample was dried in the oven at 45ºC (113ºF), to remove 

the moisture. The weight of the dried sample was Record when the weight reached a 

constant value. After that, the sample was dried at 110ºC (230ºF). The weight of the 

sample was recorded again after it reached a constant value (Fattah et al., 2012). The 

gypsum content was calculated as follows: 

𝑥 (%) =
W45 ᵒC− W110 ᵒC

W45 ᵒC
 × 4.778 × 100                               (Eq. 3.1) 

x = Gypsum content (%) 

W45ºC = Weight of the sample at 45ºC 

W110ºC = Weight of the sample at 110ºC. 

During the test, the weights were recorded when the difference between the last 

two readings was approximately ±0.02 g.  
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100 g of air-dried soil samples were used in the test, and the weights were 

checked every 24hrs. Table 3.1 shows the values of the W110ºC and the gypsum content 

over time for two samples from Soil 1 (S1).  

Table 3.1 W110ºC weights and gypsum content for Soil 1. 

Dish. No. Date Time (min) W110ºC Gypsum % 

D1 12/9/2016 1440 84.25 75.09 

12/10/2016 2933 80.47 93.16 

12/11/2016 4342 80.27 94.12 

12/12/2016 5778 80.35 93.73 

12/13/2016 7160 80.44 93.30 

12/14/2016 8573 80.39 93.54 

12/15/2016 10019 80.38 93.59 

D3 12/9/2016 1440 83.85 77.04 

12/10/2016 2933 80.61 92.53 

12/11/2016 4342 80.26 94.20 

12/12/2016 5778 80.35 93.77 

12/13/2016 7160 80.4 93.53 

12/14/2016 8573 80.42 93.44 

12/15/2016 10019 80.34 93.82 

 

Figures 3.3 and 3.4 show the relationship between time and the W110ºC weights 

with the gypsum content for Soil 1. These figures show that at approximately 4000 min., 

W110ºC weights reached constant values (between 80.25-80.5 g).  

At the same time, the gypsum contents also reached constant values (between 93-

94 %). The standard deviation for all the values after 4000 min. was approximately 0.43. 

 

 

 

  



www.manaraa.com

36 
 

 

 

 

  

  

  

  

  

 

 

 

 

 

  

 

Table 3.2 also shows the values of W110ºC and the gypsum content over time for 

two samples from Soil 2 (S2). Figures 3.5 and 3.6 show the relationship between time 

and W110ºC weights with the gypsum content for Soil 2.  

Figure 3.4 Relationship between W110ºC and gypsum content and time for  

Soil 1/Sample D3. 
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Figure 3.3 Relationship between W110ºC and gypsum content and time for  

Soil 1/Sample D1. 
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Figure 3.5 Relationship between W110ºC and gypsum content and time for  

Soil 2/Sample D7. 

Table 3.2 W110ºC weights and gypsum content for Soil 2. 

 

 

 

 

 

 

 

 

Dish No. Date Time (min) W110ºC Gypsum % 

D7 12/9/2016 1440 93.57 29.92 

12/10/2016 2933 93.44 30.54 

12/11/2016 4342 93.46 30.44 

12/12/2016 5778 93.5 30.25 

12/13/2016 7160 93.55 30.01 

12/14/2016 8573 93.56 29.96 

12/15/2016 10019 93.49 30.30 

D8 12/9/2016 1440 93.25 31.40 

12/10/2016 2933 93.23 31.50 

12/11/2016 4342 93.24 31.45 

12/12/2016 5778 93.26 31.36 

12/13/2016 7160 93.35 30.92 

12/14/2016 8573 93.34 30.97 

12/15/2016 10019 93.28 31.26 
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Figure 3.6 Relationship between W110ºC and gypsum content and time for  

Soil 2/Sample D8. 
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From the figures, it can be inferred that at approximately 3000 min., the W110ºC 

weights reached constant values for sample D7 (between 93.38-93.63 gm) and for sample 

D8 (between 93.24- 93.35 g).  

The gypsum content reached constant values for sample D7 (between 30-31 %) 

and for sample D8 (between 31-32 %). The standard deviation for all the values after 

3000 min. is approximately 0.54. 

3.1.2 Silica gel method (Nelson et al., 1978) 

This method is dependent on the loss of the crystal water in gypsum when the soil 

is heated at 105°C. At the beginning, the soil sample is dried in a desiccator with silica 

gel for 48 hrs. and then placed in an oven at 105ºC for 24 hrs.  

To calibrate the crystal water in gypsum, pure gypsum was used as a reagent and 

was also dried in both the desiccator and in the oven at 105ºC, exactly as the soil samples. 
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Then, the gypsum content was calculated by using the crystal water loss value in 

an equation to calibrate the gypsum content from the water loss method to the SO4 

method, which is the standard SO4 method (Nelson et al., 1978). 

3.1.2.1 Calibrations   

a- The silica gel weight: For this method, the soil sample and the silica gel were placed 

in a wide-mouth pint mason jar. In this study, a desiccator with an inner diameter of 

300 mm was used, which could contain multiple samples during the test. Therefore, 

due to the difference between the volume of the wide-mouth pint mason jar and the 

desiccator, the appropriate amount of silica gel that can be placed in the desiccator 

was determined. Water was used during this calibration to calculate both volumes of 

the wide-mouth pint mason jar and the desiccator. 

- A wide-mouth pint mason jar volume = 473 ml of water. 

- The volume of desiccator = 11,960 ml of water. 

- The desiccator = 25.3 wide-mouth pint mason jars. 

- With this method, for one wide-mouth pint mason jar, 10 g of silica gel was needed. 

Therefore, for the desiccator, 253 g of silica gel was needed to reach equilibrium.  

- After placing the silica gel in the desiccator, vacuum grease was placed on the edge of 

the desiccator, sealed, and left for 24 hrs. to reach equilibrium.  

b- The Moisture Dishes: For this method, an aluminum moisture dish (D = 600mm, 

depth = 15mm) was needed. This size was not available; therefore, an aluminum dish 

with D = 50 mm and depth = 21 mm was used. 

c- Scale: This method required a scale with sensitivity = 0.001 g, due to unavailability, a 

scale with sensitivity = 0.01 g was used.  
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3.1.2.2 Calculations  

1- Crystal water content in Gypsum, g/g: According to the procedure, the crystal water in 

the gypsum was calculated from the following equation  

𝑊𝑐 =
(𝑤𝑡.3−𝑤𝑡.4)

(𝑤𝑡.3−𝑤𝑡.1)
                                                                   (Eq. 3.2) 

Wc: Crystal water content in Gypsum, g/g. 

wt.1: Dish weight.  

wt.3: Dish + desiccator-dry gypsum for 48 hrs. 

wt.4: Dish + oven-dry gypsum for 24 hrs. 

2- Gypsum %: By the crystal water loss method on an oven-dry wt. basis. 

𝐺𝑦𝑝𝑠𝑢𝑚 % =
(𝑤𝑡.3−𝑤𝑡.4)(100)

(𝑤𝑡.4−𝑤𝑡.1)(𝑊𝑐)
                                              (Eq. 3.3) 

3- Estimated gypsum %: By the standard SO4 method on an oven-dry wt. basis. 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐺𝑦𝑝𝑠𝑢𝑚 % =
(𝑤𝑡.3−𝑤𝑡.4)(96.1)

(𝑤𝑡.4−𝑤𝑡.1)(𝑊𝑐)
− (0.19)         (Eq. 3.4) 

4- Estimated gypsum %: By the standard SO4 method on a soil oven-dry + gypsum 

crystal-water wt. basis. 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐺𝑦. % 𝑓𝑟𝑜𝑚 𝑏𝑜𝑡ℎ 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 =
(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐺𝑦𝑝𝑠𝑢𝑚 %)

1+(𝐺𝑦𝑝𝑠𝑢𝑚 %)(𝑊𝑐/100)
    (Eq. 3.5) 

wt.1: Dish weight.  

wt.3: Dish + desiccator-dry soil for 48 hrs. and wt.4: Dish + oven-dry soil for 24 hrs. 

3.1.2.3 Test procedure and results 

Five samples for each soil were used to determine the gypsum content. Tables 3.3 and 3.4 

show the value of gypsum contents for Soil 1, and Soil 2. 
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Table 3.3 Gypsum content for Soil 1. 

1 Estimated by both methods 

Table 3.4 Gypsum content for Soil 2. 

1 Estimated by both methods 

The results show that Soil 1 has a gypsum content between 92-94%, with a 

standard deviation of approximately 0.42, whereas, Soil 2 has a gypsum content between 

29-32%, with a standard deviation of approximately 0.67. 

3.1.3 OMRAN GypSim method (Omran, 2016) 

3.1.3.1 Using OMRAN method to calculate gypsum content for natural soils 

Gypsum content was calculated using this method by heating the samples at 70ºC 

(158ºF) for 15 min. and then at 150ºC (302ºF) for 15 min. The gypsum content was 

determined by using the following equation: 

𝐺𝑦𝑝𝑠𝑢𝑚 % =  
(𝑊70−𝑊150)

(𝑊70−𝑊𝑑)
∗ 100 ∗ (

100

19.66
)                                (Eq. 3.6) 

W70 = weight of the sample dried at 70ºC + Pyrex dish.  

Dish wt1 (gm) wt3 (gm) wt4 (gm) Wc GY % Estimated 

GY % 

Estimated 

GY%1 

CH 10.86 18.86 17.33 0.1975 119.7 114.9 92.93 

E2 11.13 19.13 17.59 0.1975 120.7 115.8 93.51 

E11 11.19 19.19 17.66 0.1975 119.7 114.9 92.93 

E1 11.18 19.17 17.65 0.1975 119 114.1 92.39 

E6 10.85 18.85 17.31 0.1975 120.7 115.8 93.51 

Dish wt1 (gm) wt3 (gm) wt4 (gm) Wc GY % Estimated 

GY % 

Estimated 

GY%1 

E9 11.12 19.09 18.59 0.193 34.7 33.1 31.02 

K12 11.12 19.1 18.62 0.193 33.2 31.7 29.79 

E10 11.14 19.11 18.61 0.193 34.7 33.1 31.02 

E13 11.19 19.17 18.66 0.193 35.4 33.8 31.64 

1 11.19 19.17 18.66 0.193 35.4 33.8 31.64 
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W150 = weight of the sample dried at 150ºC + Pyrex dish.  

Wd = weight of the Pyrex dish. 

19.66 = the recovery factor of gypsum between 70 and 150ºC. 

This method required a scale with a sensitivity of 0.001, but this type of scale was 

not available. Therefore, a scale with a sensitivity of 0.01 was used. 

3.1.3.1.1 Test procedure and results 

Four samples of each soil were used, with 20 g of air-dried soil. During the first 

trial, samples were heated at 150ºC for 15 min. (as described in the procedure), but the 

results were very small compared to previous methods. Therefore, three more trials were 

used with increased time to find a suitable time to dry all the crystal water in the soil 

gypsum. During the test, samples were left in the desiccator for approximately 5 min. to 

cool after drying at 70ºC, and for approximately 10 min. after drying at 150ºC oven 

before taking the weights. Tables 3.5, 3.6, 3.7, and 3.8 show the four sets of tests for both 

soils (S1 and S2). 

Table 3.5 Set No. 1 (12/27/2016). 

Soil Dish No. Wd (gm) W70C (gm) W150 (gm) / 15 min. GY % 

S1 C 44.36 64.38 63.96 10.67 

A 42.9 62.9 62.58 8.14 

1 57.68 77.67 77.27 10.18 

6--3 42.78 62.78 62.46 8.14 

S2 2 43.54 63.5 63.2 7.65 

3 42.47 62.43 61.96 11.98 

5 51.18 71.12 70.79 8.42 

9--1 50.59 70.56 70.19 9.42 
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Table 3.6 Set No. 2 (01/20/2017). 

Soil Dish 

No 

Wd (gm) W70C 

(gm) 

W150 (gm) GY % 

35 min 55 min 75 min 95 min 

S1 6--3 42.77 62.78 61.41 
   

34.83 

1 57.7 77.66 
 

75.25 
  

61.42 

2 43.53 63.57 
  

61.1 
 

62.69 

3 42.47 62.47 
   

59.5 75.53 

S2 A 42.9 62.88 61.98 
   

22.91 

C 44.35 64.31 
 

63.18 
  

28.8 

S 51.18 71.13 
  

69.86 
 

32.38 

9--1 50.59 70.56 
   

69.2 34.64 

 

Table 3.7 Set No. 3 (01/23/2017). 

Soil Dish 

No 

Wd 

(gm) 

W70C 

(gm) 

W150 (gm) GY % 

115 min 135 min 155 min 175 min 

S1 No.3 42.47 62.48 59.59 
   

73.46 

S 51.18 71.17 
 

68.07 
  

78.88 

No.2 43.55 63.56 
  

60.08 
 

88.46 

No.1 57.69 77.68 
   

74.18 89.06 

S2 6--3 42.78 62.76 61.44 
   

33.6 

9--1 50.6 70.53 
 

69.19 
  

34.2 

C 44.36 64.31 
  

62.96 
 

34.42 

A 42.9 62.87 
   

61.52 34.39 

 

Table 3.8 Set No. 4 (01/25/2017). 

Soil Dish 

No 

Wd 

(gm) 

W70C 

(gm) 

W150 (gm) GY % 

195 min 215 min 235 min 255 min 

S1 6--3 42.79 62.75 59.01 
   

95.31 

9--1 50.6 70.57 
 

66.73 
  

97.81 

C 44.36 64.35 
  

60.42 
 

100 

A 42.9 62.89 
   

58.96 100 

S2 No.3 42.48 62.42 61.1 
   

33.67 

S 51.18 71.12 
 

69.77 
  

34.44 

No.2 43.55 63.52 
  

62.16 
 

34.64 

No.1 57.69 77.62 
   

76.27 34.45 
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Figure 3.7 The combination of the four sets for Soil 1. 
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Figure 3.8 The Combination of the Four Sets for Soil 2. 

Figures 3.7 and 3.8 show the combination between all four sets of tests for both 

soils S1 and S2 separately. 
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For Soil 1, as shown in Figure 3.7, the gypsum content reach constant values after 

215 min. After that time, the gypsum content was 95-100 %, with a standard deviation of 

approximately 1.03. Soil 2, as shown in Figure 3.8, reached constant values after 

approximately 115 min., and the gypsum content was 33-35 % with a standard deviation 

of approximately 0.37.  

3.1.3.2 OMRAN method evaluation 

Due to the findings obtained using this method, a study was performed to evaluate 

this procedure. In this work, and in addition to the natural soil samples that were used 

previously, three other materials were used to calculate the gypsum content at different 

times with 15 min. intervals. Table 3.9 shows the different materials that were used in 

this work.  

The first material used in this evaluation was a mixture 50% of Soil 1 and 50% of 

Soil 2. This mixture was used because Soil 1 has an approximate gypsum content of 93%, 

and Soil 2 has approximate gypsum content of 31%. A mixture of these two soils would 

produce a soil with approximately 65% gypsum content. 

To evaluate a relatively larger gypsum particle, the second material consisted of 

crushed gypsum rock at different percentages. All-purpose silica sand was used as a filler 

to achieve desired gypsum content. This soil was a clean, poorly graded sand (SP) 

manufactured by Quikrete International Inc. (Atlanta, Georgia, USA). 

The third material was a synthetic gypsum, which was used to cover smaller 

gypsum particles. Samples were created by mixing this gypsum with silica sand as a 

filler.  
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Table 3.9 Characteristics of gypsum materials. 

1 According to USCS, and as A-3 soil according to ASSHTO. 
2 According to silica gel method, Nelson et al. 1978.  
3 Brought from Barchan Dune Gypsum, Lark Series, Otero County, New Mexico.    

Provided by the NRCS office in Las Cruces, New Mexico, USA. 
4 Brought from Hembrillo Series, Sierra County, New Mexico. Provided by the NRCS 

office in Las Cruces, New Mexico, USA. 
5 Manufactured by Sigma Aldrich Company in St. Louis, Missouri, USA. 
6 Provided by USA Gypsum company located in Denver, Pennsylvania, USA. 
7 According to the manufacturer.  

By using these materials to calculate the gypsum content at time intervals of 15 

min., a relationship between the relative gypsum content and the real time for different 

materials was established, which allow the unknown gypsum content for any ground 

material to be determined, as shown in Figure 3.9. The heating time at 150ºC should be 

230 min. or greater. 

 

 

 

 

 

Gypsum Material 2% psum Gy Particle Size 

(mm) 

Gypsum Particle Size 

(mm) 

Poorly graded fine 

gypseous sandy soil1, 

(S1)3 

93 0.07 - 0.42 

 

Within the range of soil 

due to the high gypsum 

content almost all soil 

particles are gypsum. 

Poorly graded fine 

gypsiferous sandy 
4)S2(, 1soil 

31 0.07 - 0.84 

 

 

0.42 mm, most of the 

gypsum passing a sieve 

number 40 

Synthetic gypsum5 

 

≥997 

 

Equivalent to 

poorly 

graded silt 

95 % < 0.1 mm 

6Gypsum rock 97 0.42- 4.00 0.42- 4.00 
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Figure 3.9 Relative gypsum content vs. real time for different ground materials. 

 

 

 

 

 

 

 

 

 

 

 

3.1.4 Conclusion 

From the standard deviations for both soils and from the three methods that were 

used, the lowest standard deviation for Soil 1was found using method No. 2 (the silica gel 

method). For Soil 2, the lowest standard deviation was found using method No. 3 (the 

OMRAN GypSim method).  

Based on these results, the best method for high gypsum content is the silica gel 

method. For low to medium gypsum content, the best method is the OMRAN GypSim 

method. However, it was found that the OMRAN GypSim method needs more 

monitoring because it is not clear when the weights at 150ºC stabilize, depends on soil 

gypsum content. The silica gel method was a straightforward method with a fixed time 

for drying in both the desiccator and the oven. In conclusion, the silica gel method is the 

best dehydration method to find gypsum content, and it was adopted for all the future 

measurements. 
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3.2 The estimation of the dissolved gypsum in a solution 

3.2.1 Electrical conductivity measurement 

Based on the concept of the conductance (current transmission ability), an 

electrical conductivity meter was chosen to estimate the dissolved gypsum in a solution. 

The meter measures the conductivity based on the presence of ions in the solution. 

3.2.2 EC reading calibration 

To connect the EC reading to the gypsum concentration in the solution, three 

different calibrations were performed by using: 

- Pure gypsum. 

- Natural soil 1 (High gypsum soil) 

- Natural soil 2 (Medium gypsum soil) 

This calibration was done to find the best formula to convert the EC reading 

directly into a gypsum concentration to determine the amount of dissolved gypsum. 

Different solutions were created with different gypsum concentrations, and then the 

maximum EC reading was taken to establish the relationship between the EC reading and 

the gypsum concentration. 

3.2.2.1 Pure gypsum solutions 

Different pure gypsum solutions were created by adding specific amount of pure 

gypsum to 500 ml of tap water. Then, all the solutions were stirred on a stirring plate, and 

every 15 min., EC readings were recorded. Once these readings reached a maximum 

value (a value after which there was no change in the EC reading), the test stopped. At 

the end of the test, a relationship between the solution concentration and the EC reading 

was plotted, and an equation was found by using a linear regression method.  
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Figure 3.10 Gypsum concentration in pure gypsum vs. EC reading. 

 

Table 3.10 shows the different gypsum concentrations used in the calculation, and 

Figure 3.10 shows the relationship between the gypsum concentrations and the EC 

readings. 

 Table 3.10 Pure gypsum concentrations with EC measurements. 

Gypsum Weight 

(gm) 

Water Volume 

(L) 

Concertation 

(g/L) 

EC after first 15 

min of stirring 

(µS/cm) 

EC max. 

(µS/cm) 

0 0.5 0.0 137.8 137.8 

0.2 0.5 0.4 490.2 494.2 

0.4 0.5 0.8 870.2 874.2 

0.6 0.5 1.2 1214.2 1217.2 

0.8 0.5 1.6 1535.2 1561.2 

1.0 0.5 2.0 1758.2 1839.2 

1.3 0.5 2.6 1969.2 2150.2 

1.5 0.5 3.0 2051.2 2177.2 

  

 

 

 

 

 

    

 Linear regression line equation: 

𝑦^ =  −0.246571068 + (0.001248005 ×  𝑥)                         (Eq. 3.7) 
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Figure 3.11 Gypsum concentration in Soil 1 vs. EC reading. 

 

3.2.2.2 Soil 1 solutions 

The previous procedure was conducted with Soil 1 samples. The difference 

between both procedures, which in this case, the amount of soil that was added would not 

result in the same amount of gypsum in the solution because even though this soil has 

about 93% of gypsum content, different soil components make up the remaining 7% of 

the sample.  

Therefore, to find the amount of gypsum that has been added to the water, each 

amount was multiplied by 93%, as shown in Table 3.11. Figure 3.11 shows the 

calibration relationship.  

Table 3.11 Soil 1 concentrations with EC measurements. 

Soil Concentration 

(g/L) 

Soil Weight 

(g)/ 500 ml 

Gypsum Content = 93.05 % EC max. 

(µS/cm) 
Gypsum Concertation (g/L) 

0 0.0 0.00 140 

1 0.5 0.93 940 

1.5 0.75 1.40 1350 

2 1.0 1.86 1580 

2.6 1.3 2.42 1960 

3 1.5 2.79 2090 
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Linear regression line equation: 

y^ = −0.253556827 + (0.001318984 ×  x)                          (Eq. 3.8) 

3.2.2.3 Soil 2 solutions 

The procedure that was used for Soil 1 was also performed on Soil 2. However, in 

this case, the soil concentration was multiplied by 31%, which is the gypsum content for 

Soil 2, as shown in Table 3.12 and Figure 3.12. 

Table 3.12 Soil 2 concentrations with EC measurements. 

Soil Concentration 

(g/L) 

Soil Weight 

(g)/ 500 ml 

Gypsum Content = 31.02 % EC max. 

(µS/cm) 
Gypsum Concertation (g/L) 

0 0.0 0.00 130 

1 0.5 0.31 410 

1.5 0.75 0.47 570 

2 1 0.62 730 

2.6 1.3 0.81 900 

3 1.5 0.93 1010 

4 2 1.24 1250 

5 2.5 1.55 1480 

6 3 1.86 1690 

7 3.5 2.17 1850 

8 4 2.48 1980 

10 5 3.10 2130 

 

 

 

 

 

 

 

 
Figure 3.12 Gypsum concentration in Soil 2 vs. EC reading. 
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Linear regression line equation: 

y^ = −0.290206567 + (0.001302608 ×  x)                             (Eq. 3.9) 

3.3 Collapse potential for natural soils 

A Jeo Jac odometer device was used, following the procedure for the single 

odometer test, according to Jinnings and Knight (1975), with 2.5-in. consolidation cell.  

3.3.1 Measurements 

Two density states, loose and dense, were used during the test for both soils. The 

loose state was created by pouring the soil in the cell from a distance of 15 cm. The dense 

state was created by compacting the soil in the cell in three layers with 55 blows per layer 

using a steel rod.  

The test started with a dry condition until the pressure of 200 kPa, and then the 

testing stopped to add the water. After the addition of the water, the test proceeded from 

the 200 kPa until the end of the loading. Two or three different amount of pressures were 

used after 24 hrs. of applying the wet 200 kPa because only the difference in void ratio 

before and after adding the water was needed. The collapse potential for each case was 

calculated, as shown in Figures 3.13 and 3.14. 

3.3.2 Results and conclusion 

1- Moderate to no problem collapse potential was found for both soils. 

2- The tests performed in static water conditions with total water volume of 0.45 L 

(the amount of water filling the consolidation cell) for a period of 24 hrs. The 

gypsum dissolution measurements showed that the amount of gypsum which has 

been dissolved was very small and almost negligible. 
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CP = 2.6 % (MODERATE TROUBLE)  

CP = 1.7 % (MODERATE TROUBLE)  

Figure 3.13 Collapse potential for Soil 1. 

3- Due to the finding that static water in this type of collapse potential system has no 

impact on gypsum dissolution, a decision was made not use this system to test the 

collapse potential for treated samples. 
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CP = 2.2 % (MODERATE TROUBLE)  

CP = 0.9 % (NO PROBLEM)  

Figure 3.14 Collapse potential for Soil 2. 
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Chapter 4 

The Behavior of Gypseous and Gypsiferous Sandy Soils Treated with 

Activated Fly ash after Exposed to Wetting-Drying Cycles 

4.1 Introduction 

Many types of treatments were used to prevent or mitigate the deterioration of 

soils with gypsum. These methods were based on the type of soil, the gypsum content, 

particle size, and specific properties to be targeted. Chemical treatment methods represent 

one of the treatment options, which uses different types of additives, such as 

geopolymers. 

In concrete, the use of a geopolymer (specifically activated fly ash) as an additive 

to ordinary Portland cement (OPC) to enhance various concrete properties was evaluated 

in different studies. Saraswathy et al. (2003) used it to improve the corrosion resistance 

and strength of ordinary concrete. Other studies used it as an alternative to OPC to 

produce an environmentally friendly concrete and reduce greenhouse emissions (Hardjito 

et al., 2004; Fernandez-Jimenez et al., 2006; Assi 2018).  

Geopolymer paste can be produced using a high-alkaline solution to dissolve the 

silicon and the aluminum atoms in a source with these materials, such as fly ash 

(Fernandez-Jimenez et al. ,2006). This process can be enhanced through curing and 

heating (Hardjito et al., 2004). 
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It has been found that these materials have excellent mechanical properties, resist 

acidic attacks, and do not have produce alkali-aggregate reactions, even when in contact 

with materials with high alkalinity (Davidovits 1999 cited by Hardjito et al., 2004). Using 

this paste, rather than cement paste, as a binder will hold other unreacted materials (fine 

and coarse aggregates) together to form geopolymer concrete (Hardjito et al., 2004).  

For soil treatment, there are a few studies that discuss the use of geopolymer as an 

additive to improve some mechanical properties. Abdullah et al. (2017) investigated the 

improvement of the dry density and strength of kaolin clay stabilized with a combination 

of granulated blast furnace slag (GBFS), with Class F fly ash activated by Grade D 

sodium silicate and 14 M concentrated sodium hydroxide (NaOH). They found that using 

these additives enhanced the maximum dry density, and for curing periods of 7 and 28 

days, the strength was equivalent to the use of 9% OPC. For curing periods of more than 

28 days, it passed the strength of 9% OPC.  

The use of 10, 20, 30, and 40% Class F fly ash activated by 12 M potassium 

hydroxide (KOH) enhanced the unconfined compressive strength for clayey soil (the 

highest strength achieved by using the 40%) as was shown by Elkhebu et al. (2018).  

In a study by Rios et al. (2016), low calcium fly ash activated by sodium silicate 

and sodium hydroxide (NaOH) was used to improve the strength, stiffness, and the 

wetting-drying resistance for silty sand soil to investigate its use in low coast unpaved 

roads in Colombia. The results indicated an increase in strength and stiffness, and the 

wetting-drying resistance behavior matched that of the same soil treated with cement. 

 



www.manaraa.com

57 
 

Geopolymer was also used in limited studies to promote various properties for 

soils that contained gypsum. A study by Alsafi et al. (2017) used Class F fly ash activated 

by two different alkali, sodium hydroxide (NaOH) and potassium hydroxide (KOH), at 

three different molarities (8, 10, and 12  M), to treat clayey sand soil with a gypsum 

content of 13.2%. To investigate the effects of higher gypsum content, the natural soil 

was mixed with pure gypsum to make samples with 25% and 45% gypsum content. 

Curing periods of 7, 28, and 90 days were used to cure the treated samples.  

They found that activation with 12 M KOH and 30% activated fly ash provided 

the greatest improvement in different soil properties, including compressive strength and 

sulfate attack resistance, along with the reduction in both collapse potential and the 

coefficient of permeability. 

A study by Jha and Sivapullaiah (2017) used 10, 20, and 30% of Class F fly ash 

as an additive to a mixture of high plasticity clayey soil (CH) and Hydrated lime 

[Ca(OH)2], along with a range of gypsum (1-6%), to prepare different samples that have 

been cured for 28, 90, 180, and 365 days.  

The findings of this work can be listed as following: the added gypsum and fly 

ash resulted in the reduction of the plasticity and the shrinkage of the lime-CH mix, an 

increase in the dry unit weight with fly ash and gypsum increase, and longer curing 

periods for the samples treated with 30% fly ash provided the highest strength due to the 

creation of the cementitious compounds (CSH, CAOH, CASH, CAH, and CASHH) as 

was seen from the micro- analysis (XRD and SEM). While few studies dealt with the use 

of the activated fly ash with soil that includes gypsum, none of them discussed the use of 

this additive to treat granular soil with very high gypsum content.  
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Furthermore, no studies were found that focused on the impact of this additive on 

gypsum dissolution, which is the most important property for soil with gypsum because 

this property is linked directly or indirectly to the deterioration of soil properties.  

Therefore, this study was designed to investigate the use of activated fly ash to 

treat poorly-graded sandy soils with 31% and 93% gypsum content and to study the 

impact of 10, 20, and 30% activated fly ash on volume stability, soil loss, gypsum 

dissolution, and the unconfined compressive test for specimens cured for 7 and 28 days.     

4.2 Materials and methods 

4.2.1 Soil samples 

Two types of soils were used. Soil 1 (S1) was high gypsum soil, Lark series, 

which is a white gypseous sandy soil from the Barchan dune in New Mexico. Soil 2 (S2) 

was medium gypsum soil, Hembrillo series, which is a brownish sandy soil with some 

roots and leaves. It is located at the northeastern end of the White Sands dune field in 

New Mexico. Both soils were sent from the NRCS office in Las Cruces, New Mexico. 

Table 4.1 shows the physical properties of the soils.  

Table 4.1 Physical Properties for Soils. 

No Classification1 Color Gypsum % 2 Particle Size 

(mm) 

Gypsum Particle 

Size (mm) 

1 

Poorly graded 

fine gypseous 

sand 

 

93 
0.07 - 0.42 

 

Within soil range 

due to the high 

gypsum content,  

(almost all the 

soil particles are 

gypsum) 

2 

Poorly graded 

fine 

gypsiferous 

sand 

 

31 

0.07 - 0.84 

 

 

0.42 mm, most of 

the gypsum 

passing a sieve 

number 40 
1 According to USCS, and as A-3 soil according to ASSHTO classification. 
2 Silica gel method, Nelson et al. 1978.  
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Moreover, a clean sand (sterling sand), which matches the gradation of these 

soils, was used to prepare control specimens that do not contain gypsum.   

4.2.2 Pure gypsum 

Synthetic gypsum was used as the pure gypsum in the test. It was manufactured 

and purchased from Sigma Aldrich (St. Louis, Missouri, USA). This gypsum had a 

gypsum content ≥99%, according to the manufacturer, and 95% of the particles are < 

0.1mm, which makes its classification equivalents to poorly graded silt.  

4.2.3 Fly ash and potassium hydroxide 

The fly ash used in this work is classified as Class F, according to ASTM C618-

19 and AASHTO M295-19. It was obtained from Cross Generating Station in Pineville, 

South Carolina, USA. 81% of the sample pass sieve #325, with loss on ignition of 1.8%. 

12 M potassium hydroxide (KOH) solution was prepared to activate the fly ash. The 

KOH was purchased from Sigma Aldrich (St. Louis, Missouri, USA) and has a flaky 

particle shape.   

4.2.4 Specimen preparation and curing method 

10, 20, and 30% activated fly ash by dry weight was mixed with dry soil to 

prepare the specimens. The activation process ensured fly ash:KOH solution ratio (solid: 

liquid) of 1.2 (Alsafi 2017). Fly ash was mixed with the dry soil by hand for five minutes, 

then the KOH solution was added and mixed thoroughly with the dry ingredients for 

approximately ten minutes or until the mixture reached a uniform moisture distribution. 

The mixture was divided into three portions and compacted in three layers inside 

a PVC mold with a diameter and height of 5.0 and 10.0 cm using a small compacting rod. 

The specimen was then removed from the mold with a manual jack.  
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The mixture was weighted and measured by taking the average diameter of three 

measurements and the average height of three measurements. Then, it was sealed with 

plastic wrap and placed in a moist container.  

For curing purposes, a plastic container was used by placing concrete blocks 

inside and then filling with tap water until ¾ of its volume. Then, a metal net was placed 

at the top of the blocks to ensure that the specimens would not be in direct contact with 

the water. The prepared specimens were placed inside the container and then covered 

with the lid. 

Two different sets of specimens were prepared to be cured for two different 

periods, 7 and 28 days. After curing, the specimens were taken up from the container, the 

plastic wrap was removed, and they were weighted and measured. After this step, the 

specimens were ready for the wetting-drying test.  

4.2.5 Gypsum content method  

A dehydration method called the silica gel method (Nelson et al., 1978) was used 

to determine the gypsum content of the soil and the remaining specimens. It is based on 

the concept that the calculation of gypsum is related to the amount of the two chemically 

bond molecules of water that evaporate when the sample heated at 105ºC for 24 hrs.  

4.2.6 Wetting-drying test 

The ASTM D559/D559M – 15 standard was used for the test. This standard was 

designed to determine the mass loss, water content, and the volume change for soil-

cement treated samples. Due to the soils’ limitation and the presence of gypsum, many 

deviations have been made to use this standard on soil treated with activated fly ash.  
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The modifications are listed in Table 4.2. For each percentage of activated fly ash, 

two specimens were molded, N1 and N2. N1 specimens were used to monitor the 

changes in volume and water content, while N2 specimens were used to measure mass 

loss. 

Table 4.2 Deviations from ASTM D559/D559M – 15. 

Step Standard Modification Rational 

Mold 4 X 4.5 in. 2 X 4 in. Limited soil 

Wd in W/C, 

cys. 

Original oven-dry 

mass 

Dry weight after 

each cycle 

Eliminate gypsum 

dissolution weight 

Wetting 5 hrs. continuous 5 hrs., remove 

samples each hr. 

EC measurement 

No water changes Water changes No solution saturation 

Drying 71º C, 42 hrs. 35º C, 3 days Min. Constant weight 

N2, strokes 4 each end, 20 side One each end, 9 side Smaller specimen 

N2 Mass loss A= oven dry mass, 

110º C 

A= oven dry mass, 

35º C 

No gypsum 

dehydration 

During the wetting process of each cycle, the electrical conductivity of the 

solution was measured. The electrical conductivity meter used in this work was a high 

range EC/TDS meter with a model No. HI99301, which was purchased from HANNA 

Instruments (Smithfield, Rhode Island, USA). The EC range was between 0.00 to 20.00 

mS/cm (0.00-20,000.00 µS/cm) with an EC resolution of 0.01 mS/cm (10 µS/cm).  

During the wetting process, the specimens were removed from the water each 

hour, and the time was stopped when the EC was measured. Afterwards, they were 

returned to the water until all the five hours of the wetting process ended. The EC 

measurements were used to estimate the amount of gypsum that dissolved during and 

after the wetting process. To estimate the amount of dissolved gypsum, different pure 

gypsum solutions were created by adding specific amounts of pure gypsum to 500 ml of 

tap water.  
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Then, the solutions were stirred on a stirring plate, and the EC readings were 

recorded every 15 min. When these readings reached a maximum value, the test was 

complete. At the end of the test, the relationship between the solution concentration and 

the EC reading was plotted, and an equation was found using the linear regression 

method (Eq. 4.1). 

𝒚^ =  −𝟎. 𝟐𝟓 + (𝟎. 𝟎𝟎𝟏𝟐 × 𝒙)                                                              (Eq. 4.1) 

𝒚^= Gypsum concentration (g/L) 

𝒙  = The electrical conductivity of the solution (µS/cm) 

This equation was used to estimate the gypsum that dissolved in each cycle. 

4.2.7 Unconfined compressive strength (UCS) test 

The procedure in the ASTM D2166/D2166M – 16 standard was used to measure 

the unconfined compressive strength for the specimens that survived 12 cycles and the 

control specimens (specimens prepared with the same conditions of the survived specimens 

but did not go through wetting-drying cycles). A Jeo Jac, an automated device, was used 

in the test, with a strain rate of 1%/min. (1mm / min.). The Young’s modulus (E) was 

estimated from the stress-strain relationship for each specimen (between 30%-70% of the 

maximum strength to ensure the measuring value was within the elastic zone). 

4.3 Results and discussion 

Twenty-four samples with average dimensions of 5. 0 × 10.0 cm were molded to 

cover 7 and 28 days of curing, as shown in Table 4.3. In this table, high and medium 

gypsum soils were represented as S1 and S2, F% represented the percentage of activated 

fly ash that was used to prepare the N1 and N2 specimens. High gypsum soil had more 

loss compared to medium soil, which mostly occurred during the wetting stage.  
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Table 4.3 Soil Specimens’ Identification                                                                      

Specimen ID Cycles survived Lost  

High gypsum soil 

7 days curing 

S1 F10% N1 None W of the 1st 

S1 F10% N2 None Removal  

S1 F20% N1 4 W of the 5th 

S1 F20% N2 None W of the 1st 

S1 F30% N1 6 W of the 7th 

S1 F30% N2 1 W of the 2nd 

28 days curing 

S1 F10% N1 1 W of the 2nd 

S1 F10% N2 2 W of the 3rd  

S1 F20% N1 8 W of the 9th 

S1 F20% N2 1 W of the 2nd 

S1 F30% N1 12  

S1 F30% N2 6 W of the 7th   

Medium gypsum soil 

7 days curing 

S2 F10% N1 None W of the 1st 

S2 F10% N2 None Removal  

S2 F20% N1 3 W of the 4th 

S2 F20% N2 None Removal  

S2 F30% N1 12  

S2 F30% N2 12  

28 days curing 

S2 F10% N1 None  W of the 1st 

S2 F10% N2 1 W of the 2nd  

S2 F20% N1 12  

S2 F20% N2 1 W of the 2nd 

S2 F30% N1 12  

S2 F30% N2 12  

 

Two of the specimens fell apart while being removed from the mold. Moreover, 

the brushing process for N2 specimens exacerbated their deterioration, and only a few of 

them survived the 12 cycles. 
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Figure 4.1 Effect of activated fly ash percent and curing time on volume change 

stability for high gypsum soil. 

 

4.3.1 Volume stability 

The volume of each specimen was measured after removal from the mold, after 

curing, and after the wetting and drying processes for each cycle. The percentage of 

volume change to the initial volume (specimen’s volume after removal from the mold) 

was calculated for each specimen.  

Figures 4.1 and 4.2 show the volume changes for two sets (7 and 28 curing 

periods) of high and medium gypsum soil specimens that were treated with 20% and 30% 

activated fly ash. None of results for 10% treated specimens have been listed because 

many of them were lost during early cycles (i.e., none of them passed the wetting part of 

the third cycle). 
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Figure 4.2 Effect of activated fly ash percent and curing time on volume change  

stability for medium gypsum soil. 
 

 

 

 

 

 

 

 

The results showed that all the specimens shrank with increasing cycles, 

However, medium gypsum specimens showed relatively high expansion during the early 

transition from the moist stage (curing) to the wetting process of cycle one.  

The high gypsum soil had very little expansion during curing. This behavior is 

related to the formation of the ettringite ((CaO)3(Al2O3)(CaSO4)3·32H2O), which filled 

the voids within the soil’s structure. However, when the voids are almost full, there are 

no more spaces for the ettringite, which will result in an increase in soil volume 

(expansion) during the curing stage due to the continuous formation of the ettringite (Jha 

and Sivapullaiah, 2017).  

Moreover, the results indicate that more volume stability (less volume change) 

was achieved with the increase in activated fly ash and the curing period. Previous 

studies found that the use of fly ash geopolymers enhances different soil properties.  
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Abdullah et al. (2017) enhanced the dry density and the strength of clayey soils by 

stabilizing it with different percentages of a mixture of fly ash geopolymer and ground 

granulated blast-furnace slag (GGBFS). The results showed that the dry density and 

strength of the soil increased with the increase in the fly ash geopolymer and the curing 

time.  

For soil with gypsum, Alsafi et al. (2017) found that treating silty sand, which has 

a gypsum content of approximately 13%, with activated fly ash as a geopolymer 

enhanced the sulfate attack resistance, enhanced the strength, reduced the collapse 

potential, enhanced soil durability, and reduced the coefficient of permeability. These 

properties improved with the use of high percentages of activated fly ash and with more 

curing time.  

These improvements in different types of soils when treated with geopolymers 

(activated fly ash specifically) are related to the formation of calcium-silicate-hydrate(C-

S-H) and calcium-aluminate-silicate-hydrate (C-A-S-H) gels and ettringite, as shown by 

Jha and Sivapullaiah (2017).  

They also mentioned that these “cementitious compounds” change the structure of 

the soil by making it more condense and hardened by creating a reinforced structure with 

bonding forces that hold the soil particles and fill the voids.  

However, it can be seen that with the increase in the wetting-drying cycles, soil 

shrinkage behavior increased. Moreover, comparing both soil results demonstrates that 

specimens with high gypsum content suffered from high soil shrinkage, compared to 

those with medium gypsum content.  
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This behavior is controlled by the loss of a portion of gypsum particles (which did 

not react with the geopolymer) by dissolution upon wetting, and because high gypsum 

soil has more gypsum content than the medium gypsum soil, it showed more shrinkage 

with cycles. These findings were supported by Aldaood et al. (2014). 

In their study, they mixed low plasticity clay (CL) with three different 

percentages of synthetic gypsum (5%, 15%, and 25%). The mixtures were then treated 

with 3% lime. They found that after subjecting the specimens to six cycles of wetting-

drying, the volume change (shrinkage) increased with cycles, and they even started to 

deteriorate after the third cycle. These changes were related to the dissolution of the 

remaining gypsum particles that did not react with the lime and the formation of cracks 

and ettringite in the soil specimens.   

4.3.2 Mass loss 

For mass loss calculations, none of the N2 high gypsum soil specimens reached 

the end of the 12 cycles for the 7 and 28 days curing periods. For medium soil, only N2 

specimens treated with 30% activated fly ash finished all 12 cycles. However, both N2 

specimens cured for 7 and 28 days showed very high percent of mass loss.  

The mass loss for the 7-day cured N2 specimen was approximately 45.82%. For 

the 28-day cured specimen, the mass loss was approximately 46.16%, almost half of the 

specimen was lost. There is no mass loss criteria listed in the ASTM D559/D559M – 15 

standard. For the few studies on cement-treated soils, the highest mass loss was 

approximately 19% for a granular soil with the classification of A-1-b, as listed in the 

standard. However, this value still cannot be used as a reference to judge the mass loss.  
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Figure 4.3 Mass loss in high gypsum N1 specimens  

cured for 7 days. 
 

S1 F20% N1 S1 F30% N1 

From the observations of all specimens that fell apart during the wetting process 

of different cycles, it was very clear that the core of the specimen was harder than the 

outside parts, as shown in Figure 4.3. This behavior supports the idea that the activation 

process of activated fly ash strengthens the soil structure by forming of C-S-H gel, C-A-

S-H gel, and ettringite, which has a reverse impact, particularly for long curing periods. 

This cementitious component was responsible for the deterioration of the specimens, due 

to post expansion that is related to the ettringite formation (Jha and Sivapullaiah, 2017). 

 

 

 

 

 

 

 

The high mass loss was also related to the dissolution of gypsum during the 

wetting part of each cycle. This observation was also found by Aldaood et al. (2014) in 

their study on lime treated clayey soil with gypsum during the wetting-drying cycles. 

Figure 4.4 provides a comparison between N1 and N2 medium gypsum soil specimens 

that were treated with 30% activated fly ash and cured for 28 days after 12 cycles. 

Although the N2 specimen was brushed 12 times and lost roughly half of its mass, it 

survived the cycles due to its harder core structure. 
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Figure 4.4 Medium gypsum soil’s specimens treated  

with 30% activated fly ash and cured for 28 days. 
 

N1 after 12 Cycles N2 after 12 Cycles 

 

 

 

 

 

 

 

To investigate the change in mass of the medium gypsum soil in both N1 and N2 

specimens, after the end of each cycle, the mass of each specimen was plotted in Figure 

4.5. The N1 specimens for each curing period showed an increase in the mass in early 

cycles.  

 

 

 

 

 

 

 
Figure 4.5 Change in mass for medium gypsum soil’s specimens treated with 30% 

activated fly ash and cured for 7, and 28 days. 



www.manaraa.com

70 
 

This behavior occurred as the result of capsulated moisture inside the specimen, 

particularly when the drying temperature was not 100ºC, as recommended by the 

standard. In this case, a drying temperature of 35ºC was used for long time (about three 

days) to prevent the loss of gypsum due to the dehydration process. 

However, after these increase in mass, a reduction occurred due to the increase in 

gypsum dissolution with cycles. N2 specimens showed the same trend at the beginning, 

followed by a significant loss. This trend was due to the brushing process after drying and 

the increase in gypsum dissolution during the wetting process of the cycles. 

The total loss for most N2 specimens before reaching the end of the 12 cycles and 

the significant mass loss for the only two specimens that survived the 12 cycles was 

related to the aggressiveness of the mass loss (brushing operation) procedure of the 

ASTM D559/D559M – 15 standard. This standard states that the brushing operation that 

was used is the same operation in ASTM D560/D560M (Standard Test Method for 

Freezing and Thawing Compacted Soil-Cement Mixture). However, George and 

Davidson (1963) said “Another severe test condition which does not simulate a field 

condition is the brushing weight loss of the specimen” to describe the brushing process 

used in the ASTM D560. 

4.3.3 Gypsum dissolution 

4.3.3.1 The measured electrical conductivity for high and medium gypsum soils 

treated with activated fly ash 

The electrical conductivity of the water bath after 5 hours of wetting for high and 

medium gypsum soils specimens are shown in Figures 4.6 and 4.7.  
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Figure 4.6 The measured electrical conductivity for high gypsum soil cured for 7, 

and 28 days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 The measured electrical conductivity for medium gypsum soil cured for 

7, and 28 days. 
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The first cycle in both soils show very high values, which gives an indication that 

these values may be a result of the non-reacting KOH or fly ash, particularly when the pH 

readings were found to be very high. (12-14). Therefore, separated tests for only fly ash 

specimens activated with fly ash and cured for 7 and 28 days were prepared to find the 

corresponding EC measurements.  

The results of these tests showed very high electrical conductivity that increased 

with the specimen weight and had very high pH readings (between 12-14), even for a 

very small portion of the specimen’s weight.  

This behavior indicates that the EC in the first cycle for both soils cured for 7 and 

28 days is related to the dispersing of the non-reacting KOH and fly ash from the 

specimen. Therefore, the first cycles were eliminated. 

In general, as shown in Figures 4.6 and 4.7, a reduction in the electrical 

conductivity was observed with the increase in cycles for both curing periods for both 

soils. This reduction means that less ions were found in the solution, which it is related to 

fewer materials being leached from the specimens with cycle increases.  

The 28-day cured specimens for high gypsum soil showed a reduction in the 

electrical conductivity, compared to the 7-day cured specimens. This result was also 

supported by the findings of Alsafi (2017) and Jha and Sivapullaiah (2017), which show 

that more curing time will result in more activation and a more stable structure. However, 

reverse behavior was found between the 7 and 2-day cured specimens of medium gypsum 

soil, which may be related to the increase in voids between soil particles due to the 

ettringite formation, particularly the volume increased. The increase in voids allowed 

more water to move through the specimens, which increased gypsum dissolution.   



www.manaraa.com

73 
 

4.3.3.2 The mass of gypsum 

Equation 4.1 was used to estimate the amount of dissolved gypsum in each cycle 

from the EC measurements. To inveistigate the fate of the gypsum that was present in 

each specimen, a comparison was done in Table 4.4.  

Table 4.4 Gypsum in Specimens Before, During, and After W-D Cycles. 

Specimen Soil’s  

gypsum 

content %1 

Specimen  

gypsum 

content %2 

 

No. of  

Cycles 

Survived 

Total 

dissolved  

gypsum %2  

(from EC)  

 

Remaining  

gypsum 

content % 3 

  

High gypsum soil 

7 days curing 

S1 F20% N1 93 87.69 4 3.99 ------- 

S1 F30% N1 93 82.65 6 5.70 ------- 

28 days curing 

S1 F20% N1 93 83.09 8 6.41 70.31 

S1 F30% N1 93 79.85 12 7.39 57.94 

Medium gypsum soil 

7 days curing 

S2 F20% N1 31 27.39 3 1.75 ------- 

S2 F30% N1 31 25.65 12 7.67 5.34 

28 days curing 

S2 F20% N1 31 27.47 12 8.42 14.25 

S2 F30% N1 31 25.57 12 9.98 8.97 
1 Silica gel method, Nelson et al. 1978 was used to find the gypsum content. 
2 To the total original dry weight for each specimen. 
3 Remaining gypsum content in the specimen after W-D Cycles, the specimen crushed 

and three random samples were selected to find the gypsum content by the Silica gel 

method, Nelson et al. 1978, then the average was taken.  

The gypsum content of each specimen was calcualted by dividing the amount of 

gypsum in the dry soil used to prepare the specimen by the original total dry weight of 

the specimen (the dry soil weight + activated fly ash weight). The total dissolived 

gypsum was estimated from the EC measurments by dividing the cumulative amount of 

dissolved gypsum from all the cycles that the specimen survived by the original total dry 

weight of the specimen.  
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However, the remaning gypsum content was found by using the silica gel method 

by crushing the specimen and taking the average of three representative samples. The 

estimate of the dissolved gypsum from the EC readings was based on an assumption that 

the ions in the water only came from the gypsum. This assumption represented a worst-

case scenario because there are definitely others ions that leached into the water from the 

non-reactive KOH or from the fly ash.  

Moreover, as has been mentioned in the mass loss section, the capsulated 

moisture inside the specimen due to the use of low drying temperature increased the mass 

in earlier cycles. Threfore, a comparision between these findings and the mass loss of N1 

specimens cannot be done. From Table 4.4, it can be seen that for each specimen, an 

amount of gypsum is missing, which can be determined by comparing the original 

amount of gypsum in the specimen to the remaining amount after W-D cycles.  

Although a small amount of gypsum was dissolved, but it was less than the 

difference between the original and the remaining amounts. This behavior indicated that 

some of the gypsum definity reacted with the activated fly ash, and a new chemical 

component resulted from this reaction, which was shown by Jha and Sivapullaiah (2017).    

While the amount of dissolved gypsum in each cycle for each case showed a trend 

of reduction as the cycles increased, the percentage of cumulative dissolved gypsum 

showed an increase with cycles, as shown in Figures 4.8 and 4.9 for both high and 

medium gypsum soils. 

The percentages of cumulative gypsum shown in these figures were calculated by 

dividing the cumulative amount of gypsum that was dissolved after all the cycles that the 

specimen survived by the original amount of gypsum in each specimen.  
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Figure 4.9 Effect of W-D cycles and curing time on cumulative gypsum 

dissolution/cycle for medium gypsum soil. 

Figure 4.8 Effect of W-D cycles and curing time on cumulative gypsum 

dissolution/cycle for high gypsum soil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 indicates that using higher activated fly ash amounts reduced the 

amount of dissolved gypsum for both curing periods. This estimate demonstrates that an 

improvement in the soil structure occurred with the increase of the stabilizer due to the 

formation of the ettringite and geopolymer gels. 
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The medium gypsum soil specimens also showed a different trend than the high 

gypsum soil, as shown in Figure 4.9. Higher activated fly ash amounts resulted in higher 

cumulative dissolved gypsum. Since gypsum dissolution was linked directly to the EC of 

the solution, this behavior was the same, as shown in Figure 4.7.  

It can be described as follow: The formation of more ettringite due to the use of 

higher activated fly ash with higher curing periods resulted in the increase in the 

expansion of the specimen, which leads to the creation of more voids in the specimen 

structure, thus allowing for more water to infiltrate and dissolve more gypsum.    

4.3.4 The unconfined compressive strength for W-D and control specimens 

The unconfined compressive strength for both survived and control specimens are listed 

in Table 4.5. Some prepared specimens did not survive all the 12 cycles. Therefore, 

control specimens that matched the survived specimens were prepared and tested.  

Table 4.5 Results of UCS and E for Survived and Control Specimens. 

Specimen 

No. 

After W-D Cycles1 Control2 

7 days curing 28 days curing 7 days curing 28 days curing 

UCS 

kPa 

E 

MPa 

UCS 

kPa 

E 

MPa 

UCS 

kPa 

E 

MPa 

UCS 

kPa 

E  

MPa 

High gypsum soil  

S1 F30% N1 --- -- 973.36 
104.9

4 
501.54 62.20 1738.29 217.59 

Medium gypsum soil  

S2 F20% N1 ---- ------ 170.83 48.37 51.51 4.9 244.67 18.1 

S2 F30% N1 635.29 34.16 371.48 27.87 33.42 1.11 187.04 16.5 

Sterling Sand     

SS F30% N1 ---- ------ ---- ------ 38.67 1.98 96.26 3.06 
1 One specimen for each. 
2 Average of three specimens. 

As shown in the table, high gypsum soil control specimens showed higher 

strength, compared to the 28-day cured specimen that survived all 12 cycles, which 

means that the wetting-drying cycles impacted the strength of high gypsum treated soil.  
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On the other hand, medium gypsum soil specimens behaved differently, behaviors 

which was directly related to the amount of activated fly ash used in the treatment. For 

the 20% activated fly ash, the control specimen showed higher strength, whereas the 30% 

activated fly ash increased the strength of the survived specimens, as compared to the 

control specimens. In this case, the wetting-drying cycles appeared to extend the curing 

of the survived specimens. 

However, for the same soil, the curing period has a different impact on the 

strength. Higher curing time resulted in lower strength for the surviving specimens. 

Conversely, the higher curing periods resulted in higher strength for the control 

specimens. Another finding can be inferred by comparing the results of the control 

sterling sand specimens with the high and medium gypsum soil specimens. This result 

directly corresponds with the findings that were discussed in the section of gypsum mass, 

which is the amount of gypsum that was not found in the specimens after the cycles.  

As can be seen, the strength of the sterling sand specimens that were treated with 

30% activated fly ash showed lower values, compared to the soils with gypsum that were 

treated with the same amount of activated fly ash. Higher gypsum content in the soil 

showed higher strength, which is directly linked to the suggestion that some of gypsum 

reacts with KOH-fly ash and creates new components that strengthen soil structure.  

In addition, no sterling sand specimens that were treated with 30% activated fly 

ash survived the first hour of wetting during the first cycle. The findings of this study 

supported the results found in Jha and Sivapullaiah, (2017), where they mixed different 

dosages of gypsum with sandy soils and lime.  
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They found that the gypsum works as an activator for the pozzolanic reaction and 

the formation of ettringite. The available silica from gypsum also leads to the formation 

of C-S-H and the C-A-S-H gels. However, the formation of more ettringite with further 

curing leads to an opposite improvement (a reduction in the strength) due to the 

expansion and the deterioration of the soil structure.    

4.4 Summary and conclusions  

The objective of this chapter was to evaluate the behavior of high and medium 

sandy soils with gypsum that was treated with three different percentages of activated fly 

ash. The first part of this work was performed by using wetting – drying cycles on soil 

specimens that were cured for 7 and 28 days. The second part was performed by testing 

the unconfined compressive strength for the surviving specimens (i.e. specimens that 

finished all 12 cycles) and control specimens matched the treatment/curing of the 

surviving specimens.   

1- Higher amounts of activated fly- ash are more suitable for use with granular soil 

with gypsum. Higher gypsum content requires higher amounts of activated fly ash 

to be used. Moreover, higher gypsum content results in higher UCS, as can be 

seen by comparing the 30% treated specimens.  

High gypsum soil that was treated with 30% and cured for 28 days had a UCS of 

approximately 973 kPa, but medium gypsum soil under the same condition had a 

UCS of approximately 371 kPa. Both specimens survived 12 cycles.  

2- The use of the mass loss as an indication of the durability of granular soil may not 

be a good option because the ASTM D559/D559M – 15 standard has no specific 

statement to judge the durability of the specimen according to its mass loss. 
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3- The gain in the unconfined compressive strength is the result of several chemical 

reactions between gypsum-fly ash and minerals-KOH. These reactions occurred 

within the soil particles and changed the soil structure. Therefore, more 

investigation needs to be done to monitor the soil structure before/after curing and 

after the wetting-drying cycles. 

4- Curing was found to be a key factor with the use of activated fly ash. Curing time 

affects the wetting resistance and soil structure for high gypsum soil. The 30% 

activated fly ash specimen had approximately 12% volume change when cured 

for 7 days, which was reduced to approximately 0% when cured for 28days. 

Moreover, the 7-day cured specimen did not survive the 12 cycles, but the 

specimen that was cured with 30% survived the 12 cycles and has a UCS of 

approximately 973 kPa. However, the curing effects on the medium gypsum soil 

were the opposite of the high gypsum soil.  

The medium gypsum specimen treated with 30% and cured for 7 days had a 

volume change of 8%, which increased to approximately -17% (expansion zone). 

The 7-day cured specimen had a UCS of 635 kPa, which was reduced to 

approximately 371 kPa for a specimen that was cured for 28 days.     
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Chapter 5  

The Effect of Static Water on the Behavior and Gypsum Dissolution for 

Gypseous and Gypsiferous Sandy Soils Treated with Asphalt Emulsion 

and Portland Cement  

5.1 Introduction 

The asphalt emulsion system consists of water (25-60%), emulsifier (0.1-2.5%), 

and asphalt binder (40-75%), along with other additives <2.5%. During the mixing 

process, the dispersed asphalt binder in water mixed with the soil, and the water helps 

mix these binders thoroughly with the soil particles. When the curing process starts, the 

water evaporates from the system, leaving a residue that consists of asphalt binders. 

These binders return to its solid stage in a process called coalescence and adhere to the 

surface of the soil particles.  

This adhering mechanism improves the soil structure by adhering the particles to 

each other, which results in more condense and compact system. This system is also 

modified to be more water resistance, which results in high soil strength. These changes 

have been found with an increase in the percentage of asphalt emulsion in each soil. Taha 

et al. (2008) proved that an increase in the UCS occurred with an increase in the liquid 

asphalt percentage (cut-back RC-70) when they treated poorly graded sand with gypsum 

content that ranged between 40-50%. 
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However, there was an optimum liquid asphalt percentage (approximately 6%), 

after which the strength was reduced with increases in the liquid asphalt percentage. They 

also found that soaking the treated samples reduced the strength for all the liquid asphalt 

percentages, but in the case of soaking, the strength continued to increase with the 

increase in the binder percentage (the highest percentage that was evaluated was 8%).   

Ahmed (2014) found that treating poorly graded silty sand, which had gypsum 

content of 49%, with asphalt emulsion increased the UCS; However, his results  also 

showed that the optimum asphalt emulsion percentage of approximately 6%, and the 

strength was reduced beyond it. 

5.2 Materials and methods  

5.2.1 Soils 

The soils used in this work were fine poorly graded sandy soils with gypsum 

(high gypsum soil (S1), medium gypsum soil (S2)) as described in previous chapters. To 

compare the results, a non-gypsum all-purpose silica sand soil (Sic) was also used in this 

work. 

5.2.2 Asphalt emulsion 

The asphalt emulsion that was used in this test is an anionic, slow-setting asphalt 

emulsion known as NTSS-1HM, produced by BLACLIDGE EMULSION, Inc., located 

in South Carolina, USA. It is often used as a tack coat in many applications, with a 

boiling point of 212ºF and a specific gravity, Gs of 1.03.  

This type of emulsion was chosen to treat the natural soil because in many 

pavements’ applications, slow-setting types of emulsions are used with fine aggregates, 

as the surface area is large and requires time for uniform mixing. 
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5.2.3 Portland cement 

The cement that was used in the work is Type I/II Portland cement. 

5.2.4 Specimens preparation and curing 

For asphalt emulsion treatment conducted in this study, three asphalt emulsion 

percentages were used (6%, 12%, and 18%), while one percentage (9%) was used for the 

cement treatment. In each case, two specimens were prepared: N1 and N2.  

As described in the standard, during each cycle, the weight and volume of the N1 

specimens were measured separately before and after wetting and drying. The weight of 

the N2 specimens were also recorded before and after wetting, as well as before and after 

applying strokes on each end and on the side of the specimen after drying. 

2 in x 4 in. PVC mold was used to compact the specimens. The soil was mixed 

with the proposed asphalt emulsion by hand (mixing and kneading) for approximately 10 

min. The mixture was compacted in the mold in three layers with a steel rod by applying 

55 blows per layer. Then, the specimens were cured at 35ºC. The temperature was chosen 

to prevent gypsum dehydration during curing.  

Curing time depends on the evaporation of the free moisture from the specimens. 

The weight of the specimen was taken each day until the difference between the last two 

weights was less than 0.5 g, which took approximately three days. The same procedure 

was used during the drying portion of each cycle. For specimens treated with Portland 

cement, 9% cement was used with 9% water content. The selection of the cement 

percentage was based on the soil classification.  
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Since both soils are type A-3, according to the ASHTTO classification, the range 

of the cement content that could have been used was between 7-11%, according to the 

soil-cement inspector’s manual (Portland cement association, 2001). 

The same compaction procedure was used to prepare the specimens, but in this 

case, the curing was different. In this case, the specimens were left inside the mold for 24 

hrs. to solidify. Then, the specimens were removed from the molds, and the initial 

weights and volumes were recorded. All specimens were cured in sealed moist container 

for 7 days.  

The moist container was filled halfway with water. The specimens were placed 

above the water level to prevent direct contact with water. Then the lid was placed, and 

the edges were sealed with duct tape. After curing, the specimens were removed from the 

container, and the weights and volumes were recorded. Table 5.1 identifies the shows 

specimens, along with the number of cycles that each specimen survived. In this table, S1 

and S2 represented high and medium soils, and the % represented the asphalt emulsion 

percentage that was used to prepare the specimens.  

5.2.5 Wetting-drying test 

The ASTM D559/D559M – 15 standard was used in the test. Modifications were 

made to the standard procedure, which are listed in Tables 5.2 and 5.3 for both 

treatments. During the wetting process, the electrical conductivity of the solution was 

measured. The electrical conductivity meter used in this work was purchased from 

HANNA instruments. It is a high range EC/TDS meter with a Model No. HI99301. The 

EC ranged between 0.00 to 20.00 mS/cm (0.00-20,000.00 µS/cm) with an EC resolution 

of 0.01 mS/cm (10 µS/cm).  
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Figure 5.1 Medium gypsum soil specimens treated with 6%  

asphalt emulsion. 

 

N2 lost during the 1st cycle. N1 lost after W of the 9th cycle. 

Table 5.1 Soil specimen identification                                                                      

 

1 Medium gypsum soil specimens treated with 6% asphalt emulsion (Figure 5.1); N2 

failed in the first hour of wetting during the first cycle; N1 failed after finishing the 

wetting portion of the ninth cycle. 

  

 

 

 

 

Specimen ID Cycles survived Lost / Fell apart   

Asphalt emulsion treatment 

High gypsum soil 

S1 6% N1 12 N/A 

S1 6% N2 12 N/A 

S1 12% N1 12 N/A 

S1 12% N2 12 N/A 

S1 18% N1 12 N/A 

S1 18% N2 12 N/A 

Medium gypsum soil 

S2 6% N1 W of the 91  Before D of 9th  

S2 6% N2 None1 W of the 1st 

S2 12% N1 12 N/A 

S2 12% N2 12 N/A 

S2 18% N1 12 N/A 

S2 18% N2 12 N/A 

Silica sand soil (non-gypsum) 

Sic 6%N1 7 N/A 

Sic 12%N1 7 N/A 

Sic 18%N1 7 N/A 

Portland cement treatment 

High gypsum soil 

S1 C9% N1 12 N/A 

S1 C9% N2 12 N/A 

Medium gypsum soil  

S2 C9% N1 12 N/A 

S2 C9% N2 12 N/A 
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Table 5.2 Deviations from ASTM D559/D559M – 15 for asphalt emulsion treatment. 

Step Standard Modification Rationale 

Mold 4 X 4.5 in. 2 X 4 in. Limited soil 

Additive Cement Asphalt emulsion Study objective 

Curing 7 days, in moist room Min. of 3 days, 

in 35º C oven 

Constant weight, 

no gypsum 

dehydration 

Vo of N1 Molding volume After curing Exact volume, 

neglect initial 

shrinkage 

Wd in W/C, cys. Original oven-dry mass Dry weight after 

each cycle 

Eliminate gypsum 

dissolution weight 

Wetting 5 hrs. continuous 5 hrs., remove 

specimens each hr. 

EC measurement 

No water changes Water changes No solution 

saturation 

Drying 71º C, 42 hrs. 35º C, 3 days Min. Constant weight 

N2, strokes 4 each end, 20 side One each end, 9 

side 

Smaller specimen 

N2 Mass loss B, standard table. 1 B=0 No water retains in 

spec. 

A= oven dry mass, 

110º C 

A= oven dry mass, 

35º C 

No gypsum 

dehydration 
 

Table 5.3 Deviations from ASTM D559/D559M – 15 for Portland cement treatment. 

Step Standard Modification Rationale 

Mold 4 X 4.5 in. 2 X 4 in. Limited soil 

Wd in W/C, cys. Original oven-dry mass Dry weight after 

each cycle 

Eliminate gypsum 

dissolution weight 

Wetting 5 hrs. continuous 5 hrs., remove 

specimens each hr. 

EC measurement 

No water changes Water changes No solution 

saturation 

Drying 71º C, 42 hrs. 35º C, 3 days Min. Constant weight 

N2, strokes 4 each end, 20 side One each end, 9 

side 

Smaller specimen 

N2 Mass loss A= oven dry mass, 

110º C 

A= oven dry mass, 

35º C 

No gypsum 

dehydration 
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During the wetting process, the specimens were removed from the water each 

hour, and the time was stopped when the EC was measured. Afterwards, they were 

returned to the water until all five hours of the wetting process ended.  

The EC measurements were used to estimate the amount of dissolved gypsum 

once the wetting process was finished by using linear regression equations for pure 

gypsum, high gypsum soil (S1), and medium gypsum soil (S2), which are listed in 

Chapter 3. 

5.3 Results and discussion 

5.3.1 Volume changes in N1 specimens during cycles 

The volume changes for each N1 specimen during each cycle were calculated. 

The volume change during each cycle was measured twice, after wetting and after drying, 

by taking the difference between the current volume and the initial volume, which was 

the volume of the sample after curing. For cement treatment, the volume was taken 

exactly after removing the specimen from the mold. The volume measurement was done 

by taking the average of three diameters, and the three highest with 120º between each 

measurement. 

∆𝑉

𝑉𝑜
=  

(𝑉−𝑉𝑜)

𝑉𝑜
 × 100                                                                 (Eq. 5.1) 

∆𝑉

𝑉𝑜
 = Volume change 

V = Volume of sample after wetting or drying. 

Vo = Initial volume. 

 Figure 5.2 shows the volume change versus cycles for high and medium gypsum 

soils treated with asphalt emulsion and Portland cement.  
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High gypsum soil 

Medium gypsum soil 

 

 

Figure 5.2 Volume change vs. cycles for high and medium gypsum soils. 

 

  

  

 

 

 

 

 

 

 

 

 

It shows that all specimens, despite the type of additive that was used for 

treatment, had a trend of overall slight shrinkage behavior with cycles, except for the 

medium gypsum soil specimen treated with 6% asphalt emulsion, which continue to 

shrink until it failed, prior to reaching the end of the 12 cycles.  

12% asphalt emulsion provided the most stable volume for the specimen with 

high gypsum soil, whereas 18% asphalt emulsion treated specimen was more stable 

specimen for medium gypsum soil.  
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The use of asphalt emulsion improved the durability of soil with gypsum due to 

the improvement in the soils’ cohesion when treated with asphalt emulsions, as shown by 

work conducted by Ahmed (2014) on poorly graded silty sand with gypsum content 

approximately 49% that was treated with asphalt emulsion. 

The improvements of soils with gypsum that was treated with asphalt emulsion 

were related to the physical interaction and changes that occurred in the microstructure of 

the mixture due to the interlocking and interleaving process, which occurred between the 

calcium sulfate molecules (from gypsum) and the asphalt binders. No chemical 

interaction occurred between these two components, as was seen in the microstructure 

study that was done by Fan et al. (2019), where they examined the effects of different 

types of calcium sulfate whiskers on the performance of asphalt binder.         

Cement treatment in both soils showed that 9% cement content provided volume 

change behavior that is closer to treating both soils with 18% asphalt emulsion, which is 

clear from both figures. However, 18% asphalt emulsion did not provide the lowest 

volume changes for high gypsum soil.  

The initial improvement in the durability of the soil with gypsum treated with 

Portland cement is related to ettringite and formation of C-S-H, which was also found to 

cause deterioration due to the sulfate attack that occurred between the C-S-H and the 

sulfate ion (from gypsum), along with and the expansion related to the continued 

formation of ettringite upon wetting (Alsafi et al., 2017).     

5.3.2 Water content changes in N1 specimens during cycles 

 The water content in each cycle was measured by taking the difference between 

the sample weights (after wetting and drying) and the original dry weight.  
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In this case, the original dry weight was the same as the drying weight in each 

cycle, as opposed to the initial dry weight after curing (which is a deviation from the 

standard). This approach was taken to minimize the errors related to weight loss due to 

gypsum dissolution during wetting. 

𝑤
𝐶 ⁄ % =

(𝑊𝑤−𝑊𝑑)

𝑊𝑑
 × 100                                                     (Eq. 5.2) 

𝑤
𝐶 ⁄ % = water content of sample. 

Ww = Weight of sample after wetting. 

Wd = Weight of sample after drying. 

 Figure 5.3 shows the change in the water content for both soils treated with 

asphalt emulsion. The water content during drying was zero because the water content 

calculation used the drying weight as the initial dry wight. In both soils, the lowest water 

content was found in the specimens that were treated with 18% asphalt emulsion.  

There was an interlock between the water content of the 12% and 18% asphalt 

emulsion treated specimens in medium gypsum soil. The water content was almost stable 

with cycles for each asphalt emulsion percentage, except for the medium gypsum 

specimen that was treated with 6% (failed specimen). A reduction trend was observed.  

The water content results indicated that almost all specimens, with the exception 

of medium gypsum soil specimen that was treated with 6% asphalt emulsion, had very 

few changes in voids due to gypsum dissolution. This occurrence was considered to be an 

advantage for the use of asphalt emulsion as a treatment because any increase in water 

content would suggest that more gypsum was dissolved, and remained more voids in the 

system, as has shown by Aldaood et al. (2014). In their study, they found that an increase 

in water content occurred with increased cycles.  
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High gypsum soil 

Medium gypsum soil 

Figure 5.3 Water content vs. cycles during wetting for high and medium gypsum soils. 

They examined the soil structure after wetting and found that more voids were 

created due to gypsum dissolution for low plasticity clay (CL) mixed with three different 

percentages of synthetic gypsum (5%, 15%, and 25%) and then treated with 3% lime. 
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5.3.3 Permeable porosity 

To investigate how the asphalt emulsion and cement impacted the porosity of 

soils, the permeable porosity for each N1 sample was calculated by assuming that the 

volume of the pores was equal to volume of the water filling the pores and that all the 

pores are connected. The permeable porosity was calculated as follows: 

𝑛𝑝 =  
𝑉𝑝

𝑉
             (Eq. 5.3) 

np = Permeable porosity. 

Vp = Volume of pores = volume of water filling the pores (Vw = Ww * γw) after wetting. 

V = Sample volume after wetting. 

Figure 5.4 shows the relationship between the permeable porosity for the wetting 

portion of each cycle for both soils. In both soils that were treated with asphalt emulsion, 

the permeable porosity was almost constant during all cycles, except the medium gypsum 

soil that was treated with 6% asphalt emulsion. The lowest permeable porosity was 

achieved by using the 18% asphalt emulsion, which was approximately 0.04 in high 

gypsum soil, and between 0.04-0.08 in medium gypsum soil. 

Using cement as a treatment for both soils provided nearly the same permeable 

porosity in both soils (np about 0.2) during all cycles. These results support the idea that 

using the same cement content in both soils provided nearly the same soil structure, and 

as a result, the same pore space between particles, regardless of gypsum content, 

particularly when both soils are poorly graded fine sand. Nevertheless, treatment with 

cement is not preferable due to the deterioration that occurs due to the expected sulfate 

attack, which is the result of the presence of the sulfate ion from gypsum.  
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High gypsum soil 

 

Medium gypsum soil 

Figure 5.4 Permeable porosity in high and medium gypsum soils.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When comparing the results of the permeable porosity of cement treated samples 

with asphalt emulsion treated samples, it is evident that treating both soils with 18% 

asphalt emulsion provided the lowest permeable porosity, which is clear because using 

more asphalt emulsion will reduce the spaces between soil particles.  
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Although using cement did not prevent water from infiltrating between particles, 

in high gypsum soil, using cement as treatment provided a greater reduction in the 

permeable porosity than using 6% and 12% asphalt emulsion percentages, which is 

related to the fact that this soil has more gypsum to dissolve, thus it needs more emulsion 

to reduce the space between particles. 

 As has been observed, the porosity results emphasized that a reduction in gypsum 

dissolution reduction occurred by using asphalt emulsion as a treatment because the 

stability of the porosity showed fewer voids being created due to wetting. However, 

Aldaood et al. (2014) found an increase in porosity upon wetting due to the increase in 

gypsum dissolution for low plasticity clayey soils mixed with gypsum and treated with 

lime.  

    5.3.4 Soil mass loss 

For each soil, the dry weights of the N2 specimens for each asphalt emulsion 

percentage and the 9% cement percentage were taken before starting the cycles and after 

finishing all twelve cycles. The mass loss percentage was calculated according to the 

ASTM D559/D559M – 15 standard with some deviations, as shown in Tables 5.2 and 

5.3. The results are shown in Table 5.4. There is no value for S26%N2 because this 

specimen was lost during the first wetting cycle. 

Table 5.4 Total mass loss of N2 specimens 

Soil Asphalt emulsion Portland cement 

Specimen Total mass loss % Specimen Total mass loss % 

Soil 1 S1 6% N2 37.33 S1 C9% N2 7.70 

S1 12% N2 6.51 

S1 18% N2 3.85 

Soil 2 S2 6% N2 -------- S2 C9% N2 6.57 

S2 12% N2 15.86 

S2 18% N2 5.23 
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For mass loss, the same volume stability trend was shown by reducing the mass 

loss with an increase of asphalt emulsion. This trend occurred because any increase in the 

asphalt emulsion resulted in increased adhering between the soil particles and resulted in 

a denser soil structure, along with lowest gypsum dissolution. In cement treatment, the 

results showed that the high gypsum soil specimen lost more particles than the other soil, 

although the difference between the soils was not significant. However, these results 

suggest that the adherence between the cement and soil particles in medium gypsum soil 

was slightly higher.  

By comparing the two types of treatments, it can be inferred that for high gypsum 

soil using 9% cement provided a mass loss that is similar to the use of the 12% asphalt 

emulsion, and for medium gypsum soil using 9% cement provided a mass loss similar to 

the use of the 18% asphalt emulsion.  

However, for both soils, treatment with 18% asphalt emulsion provided the lowest 

mass loss. This result may be related to the fact that using more emulsion results in more 

adherence between soil particles, less space between particles, and a more stable structure 

than using 9% cement. The results also suggest that 6% asphalt emulsion is not enough to 

prevent the mass loss in both soils. In general, the mass loss results showed that the use 

of asphalt emulsion as an additive to treat these two types of soil is a good approach to 

conserve the soil mass, compared to the use of activated fly ash, which was described in 

Chapter 4. The activated fly ash nerve prevents high gypsum soil specimens from falling 

apart (none of the N2 specimens survived the wetting-drying cycles), and the mass loss 

was approximately 45% for the both N2 medium gypsum soil specimens treated with 

30% activated fly ash and cured for 7 and 28.    
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High gypsum soil 

Medium gypsum soil 

Figure 5.5 Gypsum dissolution / cycle for high and medium gypsum treated with 

asphalt emulsion soils. 

5.3.5 Gypsum dissolution estimation 

 The EC measurements was used to estimate the dissolved gypsum for each cycle. 

For specimens that were treated with asphalt emulsion, the results are shown in Figure 

5.5, and the results for the cement treated specimens are shown in Figure 5.6. A reduction 

trend was observed in both soils. For asphalt treatment, higher asphalt emulsion 

percentage resulted in lower dissolved gypsum for each cycle.  
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Medium gypsum soil specimens that were treated with 18% asphalt emulsion 

reached a state where no more gypsum dissolved (between the 6th and 7th cycle). For 9% 

cement treatment, it can be seen that the amount of dissolved gypsum was also reduced 

with cycle increases for both soils.  

 

High gypsum soil 

Medium gypsum soil 

Figure 5.6 Gypsum dissolution / cycle for high and medium gypsum treated with cement. 
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However, medium gypsum soil specimens showed lower values than high 

gypsum soil. Nevertheless, the N2 specimens in both soils showed higher values due to 

the brushing operation, which increased the amount of soil that was in direct contact with 

water.  

To be sure that the EC measurements in the water come only from the gypsum 

ions in the soil during the asphalt emulsion treatment and are not from the components of 

the asphalt emulsion, three specimens of non-gypsum silica sand treated with 6, 12, and 

18% asphalt emulsion were prepared and cured according to the conditions of the 

gypsum soil specimens. 

 These specimens went through wetting-drying cycles with EC measurements as 

shown in Table 5.5. As can be observed, Cycles 1 and 2 had the highest EC 

measurements, which indicated that some chemicals from the emulsion leached into the 

water. After Cycle 3, the EC values were constant until Cycles 7. These small values after 

Cycle 3 were negligible, and the flocculation in the EC was noticed even in the pure tap 

water. 

Table 5.5 The EC measurements in each cycle for silica sand specimens. 

No. EC (µS/cm) 

Cycle 1 2 3 4 5 6 7 

Sic 6%N1 ---- 60 30 30 20 20 10 

Sic 12%N1 50 30 10 10 10 10 10 

Sic 18%N1 80 20 0 10 10 10 10 

 

From the table above, it can be inferred that the asphalt emulsion had zero or 

relatively small effects on the EC reading in the gypsum soil specimens treated with the 

asphalt emulsion. The total dissolved gypsum dissolved in each soil for the N1 and N2 

specimens treated with asphalt emulsion are shown in Figure 5.7.  
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High gypsum soil 

Medium gypsum soil 

Figure 5.7 Total gypsum dissolved in high and medium gypsum soils. 

 

 

 

 

 

 

 

 

 

 

 

The results showed that more gypsum dissolved in the high gypsum soil 

specimens, compared to the medium specimens, but, in both soils, the N2 specimens lost 

more gypsum than the N1 specimens.  

The highest gypsum dissolution occurred in the specimens treated with the 6% 

asphalt emulsion. Table 5.6 compares these results with the 9% cement treated N1 and 

N2 specimens. The maximum gypsum dissolution potential was estimated from the 

general gypsum dissolution rate (2.6 g/L) and the total amount of water used during the 

twelve cycles.  
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Table 5.6 Max. potential and measured gypsum dissolution in both soils. 

 

 

 

 

 

 

 

 

 

From the table, it was determined that 9% cement did not prevent gypsum from 

dissolving. Although, the reduction was much less than the maximum potential 

dissolution of gypsum, it was not as low as the 18% asphalt emulsion in both N1 and N2 

specimens for both soils. 

5.4 Summary and conclusions 

In this chapter, the effect of static water was studied to evaluate its influence on 

soil durability (volume, mass) and gypsum dissolution by using wetting-drying cycles on 

sandy soils with gypsum treated with different additives.  

Sample 

Water 

Vol. 1.8 

L X 12 

Total Gypsum Dissolution (gm) 

Max. potential from 

gypsum rate (2.6 

gm/L) 

Measured 

from Pure 

Calib. 

Measured 

from Soil 

Calib. 

High gypsum soil / asphalt emulsion treatment 

S1 6%N1 21.6 21.6 X 2.6 = 56.16 8.06 8.67 

S1 6%N2 21.6 56.16 8.64 9.29 

S1 12%N1 21.6 56.16 6.58 7.10 

S1 12%N2 21.6 56.16 7.23 7.79 

S1 18%N1 21.6 56.16 4.53 4.94 

S1 18%N2 21.6 56.16 5.25 5.70 

High gypsum soil / cement treatment 

S1 C9% N1 21.6 56.16 6.92 7.46 

S1 C9% N2 21.6 56.16 8.47 9.10 

Medium gypsum soil / asphalt emulsion treatment 

S2 6%N1 21.6 21.6 X 2.6 = 56.16 4.18 3.83 

S2 12%N1 21.6 56.16 0.93 0.67 

S2 12%N2 21.6 56.16 3.54 2.99 

S2 18%N1 21.6 56.16 0.69 0.57 

S2 18%N2 21.6 56.16 1.40 1.13 

Medium gypsum soil / cement treatment 

S2 C9% N1 21.6 56.16 1.13 1.26 

S2 C9% N2 21.6 56.16 2.69 2.99 
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The first portion of this work was performed by using wetting – drying cycles on 

soil specimens treated with three different asphalt emulsion percentages (6%, 12%, and 

18%). 

 The second portion was a control test that was conducted by using the same 

wetting-drying cycles on samples that were treated with 9% Portland cement because the 

standard that was used in this work was originally designed to evaluate the durability of 

compacted soil-cement mixtures. The following conclusions were found from this study:  

1- Using 6% asphalt emulsion was not enough to stabilize the volume changes or to 

mitigate mass loss. N1 and N2 medium gypsum soil treated with 6% asphalt 

emulsion did not survive the twelve cycles. The N2 specimen was lost during the 

wetting portion of the first cycle, and the N1 specimen was lost during the wetting 

portion of the ninth cycle. The N1 specimen of high gypsum soil treated with 6% 

asphalt emulsion showed the highest changes in volume and water content, 

compared to other asphalt emulsion percentages. The N2 specimen with the same 

percentage showed the highest mass loss.  

2- The results also showed that the medium gypsum soil with gypsum content of 

31% shrank less than Soil 1, which had gypsum content of approximately 93%. 

This behavior was related to gypsum dissolution because it had the lowest 

gypsum content. In both soils, shrinkage behavior generally increased with cycles, 

whereas the water content showed constant behavior with cycles, which was seen 

in the 9% cement treated specimens.   

3- The shrinkage behavior and the water content of the N1 specimens decreased with 

an increase in the asphalt emulsion percentage.  
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In high gypsum soil, 12% asphalt emulsion specimen showed the lowest volume 

changes, and in medium gypsum soil, 18% asphalt emulsion showed the lowest 

volume changes. For water content in both soils, 18% specimens showed the 

lowest changes in water content. 

4- Using asphalt emulsion greater than 12% is a good approach to treat these soils 

because it reduced the permeable porosity to very low values, which resulted in 

volume stability and the lowest mass loss.  

5- The 9% cement treatment also stabilized the volume in both soils, such that the 

volume was similar to the higher percentage of asphalt emulsion (12 and 18%). 

However, it did not close the voids as the asphalt emulsion did, which is clear 

from the permeable porosity results.  

6- Although the cement treatment showed good improvement, it is not preferable 

due to the sulfate attack that would be initiated upon wetting as a result of the 

reaction between the cement components and the sulfate ions from gypsum in the 

soil in the presence of the water.  
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Chapter 6 

The Effect of Moving Water on the permeability and the Gypsum 

Dissolution for Gypseous and Gypsiferous Sandy Soils Treated with 

Asphalt Emulsion  

6.1 Materials and methods 

6.1.1 Soils 

 The same medium and high gypsum soils described earlier are used in this work 

6.1.2 Asphalt emulsion 

 The same asphalt emulsion described in Chapter 5 was used to prepare the treated 

samples. Two percentages of asphalt emulsion, 6% and 18% were used in the treatment, 

depending on wetting-drying results, which represents a static water conditions. 

6.1.3 Methods 

 Two standard methods were used in this work. The first standard was the constant 

head procedure listed in ASTM D2434-68 (2000), which used a permeameter cell with a 

diameter of 2.5 in. and a sample height of 6 in., along with a head of 17.8 cm and an 

initial gradient of 1.18. 

This procedure was used to measure the coefficient of permeability for the 

untreated soil samples and for one set of treated samples, with leachate collection. In this 

case, the treated samples were mixed with 6% asphalt emulsion, then cured at 35ºC and 

compacted inside the cell.
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The dry unit weight that was used to prepare the sample was similar to the dry 

unit weight of the 6% treated samples, which were used in the wetting-drying study in 

Chapter 5. Compaction was conducted by dividing the soil weight into three batches and 

they were compacted in three layers inside the cell with a steel rod.  

The second method is a combination of two procedures from ASTM D5084-16a 

and ASTM D2434-68 (2000). Both soil samples were treated with 18% asphalt emulsion. 

In this case, the sample height and diameter were the same as the previous method; 

however, the sample was compacted in a split PVC mold and then cured at 35ºC.  

After the sample reached a constant weight, it was placed in 2.5 in. membrane and 

installed inside a flexible wall cell for testing. The procedure consists of the following: A 

flexible wall cell is used to measure the coefficient of permeability for the two soils by 

setting up the sample in the cell according to the procedure described in ASTM D5084, 

applying confining pressure of no more than 5 psi to hold the sample without falling, and 

attaching the membrane to the sample to prevent any water leaks.  

The sample was saturated by applying vacuum pressure from the top nozzle, 

closing the bottom nozzle by applying a vacuum pressure of 20 Hg for 15 min., and then 

opening the bottom nozzle to allow water from a container to slowly flow through the 

sample from the bottom to the top slowly until water can be seen in the hose (according 

to ASTM D2434).  

After saturation, the constant head test began by following the same procedure 

outlined in ASTM D2434, which has been used to test untreated soil samples by applying 

a head of 17.8 cm and then measuring the coefficient of permeability (k) directly after 

opening the nozzles with leachate collection. 
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During both tests, the pore volume of each sample was calculated. Then, after 

starting the test, an initial k value was measured by taking the average of three readings. 

Afterwards, the test was repeated after one pore volume passed through the sample. It is 

important the mention that the water flow remained open from the beginning of the test 

until the decision was made to terminate the test.  

The leachate was collected from the beginning of the test, and for each k 

measurement, the EC conductivity of the leachate volume collected was recorded. This 

value was used to estimate the dissolved gypsum, as described previously.  

6.2 Results and discussion 

6.2.1 Untreated soils tests 

 To investigate the relationship between the coefficient of permeability, k, and the 

leachate volume, they were plotted on Figure 6.1 for untreated high and medium gypsum 

soil samples. High gypsum soil has the highest k, and more water flowed through it, 

compared to medium soil within the same time. The trend shows that k decreased in both 

soils with water flowing. rate.  

 

 

 

 

 

 

Figure 6.1 Coefficient of permeability for untreated high and medium gypsum. 

soils. 
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Figure 6.2 EC measurements for untreated high and medium gypsum soils. 

The reduction of k is related to the change in the soil structure, which is related to 

the movement of particles to close the voids, reduce the micro tubes in the soil, and 

reduce the flow 

Kuttah and Sato (2015) linked the permeability in soil with gypsum to two 

factors: gypsum content in soil and the size of gypsum particles. The permeability of soil 

with gypsum increased with an increase in the gypsum content, which only occurred 

when the gypsum particles were larger than the soil particles due to the dissolution of 

gypsum. while the permeability of the soil with gypsum decreased with an increase in 

gypsum content when the gypsum particles were smaller than the soil particles, in this 

case, when gypsum particles began to dissolve and move with the water, it closed the 

water paths and reduced the overall soil permeability.   

The EC measurements show that these values remained constant at approximately 

2200 µS/cm for high gypsum soil and 2000 µS/cm for medium gypsum soil for the entire 

test, as shown in Figure 6.2. This behavior indicates that the gypsum started to dissolve 

from the beginning until the end of the test at same rate. 
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Figure 6.3 Gypsum dissolution for untreated high and medium gypsum soils. 

The EC readings in both soils were used to estimate gypsum dissolution and were 

plotted against the leachate volume in Figure 6.3 for high and medium gypsum soil. This 

figure shows the cumulative dissolution. The dissolution of gypsum was constant with 

leachate volume and similar to the general rate of dissolution, which is 2.6 g/L.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The lowest total amount of dissolved gypsum in the medium gypsum sample was 

not related to the lower amount of gypsum, when compared to the high gypsum sample, 

but was related to the fact that less water moved through the sample because this soil had 

lower permeability. 
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The mass loss was very clear when comparing the samples before and after 

testing. Figure 6.4 shows the mass loss in both samples, which occurred in both soils. 

However, high gypsum soil lost more mass due to its higher coefficient of permeability 

and higher amount of gypsum. This mass loss was only related to gypsum dissolution. In 

other words, no particles were allowed to seep out with the leaching water.  

 

 

 

  

 

 

 

6.2.1.1 Modeling the relation between the permeability and gypsum dissolution 

 The permeability for untreated soils indicated a strong relationship between the 

dissolution of soluble solids (i.e., gypsum) and soil coefficient of permeability. Many 

empirical formulas were used to predict the coefficient of permeability for different types 

of soil. However, limited prediction formulas are available that connect the soil 

coefficient of permeability with the dissolution rate of different soluble minerals.   

 

 

 

Figure 6.4 Mass loss due to gypsum dissolution for untreated high 

and medium gypsum soils. 
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6.2.1.1.1 Baena and Toledo, 2014 model 

Baena and Toledo (2014) used the Kozeny–Carman (Kozeny 1927; Carman 1956) 

equation (Eq. 6.1) to produce a model, which they verified it experimentally, to 

investigate the seepage, which will occur under the foundations due to mineral 

dissolution when subjected to the intergranular flow of water.  

𝑘 =
𝑔𝜌

𝑣
 
1

5
 (

𝑉𝑔

𝑆
)

2 𝑛3

(1−𝑛)2
                                                                        (Eq. 6.1) 

k = Coefficient of permeability. 

g = Gravitational acceleration constant. 

𝜌 = Fluid density. 

𝒗 = Fluid viscosity. 

Vg = Volume of grain. 

S = Surface area of grain. 

n = Porosity. 

 To estimate the initial coefficient of permeability (ko), they used Eq. 6.1 directly 

with the initial porosity (no), as follows: 

𝑘𝑜 =  
𝑔𝜌

𝑣
 
1

5
 (

𝑉𝑔

𝑆
)

2 𝑛𝑜
3

(1−𝑛𝑜)2
         (Eq. 6.2) 

To estimate the coefficient of permeability at a specific time after the dissolution 

of the soluble minerals began, the following terms were used: 

Vt = soil volume 

Vt = Vh + Vs + Vin 

 

 

https://www.google.com/search?rlz=1C1_____enIQ554&sxsrf=ALeKk03u3ryr2KFbEI8xHfN4UvmVd64sqQ:1599435494693&q=Gravitational+acceleration+constant&stick=H4sIAAAAAAAAAOPgE-LUz9U3SIrPskhS4tVP1zc0zDBKKzK2qDLUsshOttJPTSlNTizJzM_TL0ksSk8tic9Pi09OzEkuzQGLWqXlF-UC2QqZuYnpqQqJecXlqUWPGC24BV7-uCcspT9pzclrjJpcXMEZ-eWueSWZJZVC0lxsUJagFD8Xqp08i1iV3YsSyzJLwKYn5igkJien5qQWgbkKyfl5xSWJeSUAQI7_IbcAAAA&sa=X&ved=2ahUKEwjf7oHE2dXrAhWYB80KHee3AVEQ3IYFMBN6BAgNEAI


www.manaraa.com

109 
 

Vh = volume of interconnected pore holes 

Vs = volume of soluble particles 

Vin = volume of insoluble particles 

- The effective porosity before dissolution no = Vh / Vt 

- They assumed that when dissolution occurs, the effective porosity increases. 

  The post-dissolution effective porosity (n)  

 

 

Ø = Vs / Vt (with Ø being the percentage in volume of soluble material) 

 The coefficient of permeability after dissolution (ktd) will be found by using the same 

equation (Eq. 6.1) but by plugging in the post-dissolution effective porosity (n). 

𝑘𝑡𝑑 =
𝑔𝜌

𝑣
 
1

5
 (

𝑉𝑔

𝑆
)

2 𝑛3

(1−𝑛)2
                                                                   (Eq. 6.3) 

ktd = The coefficient of permeability after dissolution.  

 In their assumption, all the factors, such as the liquid density and viscosity, along 

with the ratio between the volume of the grain and its surface area, are constant. Then, 

the coefficient of permeability after dissolution (ktd) will be determined by dividing Eq. 

6.3 by Eq. 6.2. 

𝑘𝑡𝑑 = 𝑘𝑜

(1 − 𝑛𝑜)2𝑛3

𝑛𝑜
3(1 − 𝑛)2

 

𝑘𝑡𝑑 = 𝑘𝑜
(1−𝑛𝑜)2(𝑛𝑜+∅)3

𝑛𝑜
3(1−𝑛𝑜−∅)2     Baena and Toledo, 2014 model   (Eq. 6.4) 
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Figure 6.5 Baena and Toledo, 2014 model for a specific range of no and Ø. 

 They proved the model experimentally by performing two seepage tests on 

Hostun sand. The first test was conducted by mixing the sand with high soluble mineral 

(sodium bicarbonate with solubility rate of about 106 g/L). The second test (long test) 

was conducted by mixing the sand with natural gypsum, which has a purity of 

approximately 75% (solubility rate of about 2.4 g/L). 

6.2.1.1.2 The influence of Ø on k prediction 

In this study, prior to using the Baena and Toledo 2014 model, the model was 

tested within a range of initial porosity (no) to find the relationship between (ktd / ko) and 

the values of Ø, as shown in Figure 6.5.  

no values were selected within the range of 0.3 – 0.46 to match the range of 

granular soil found in Foundation Engineering, 2nd Edition (Peck, Hanson, and 

Thornburn, 1974). Ø values were selected to start from zero (no dissolution occurs), to 

the highest value of Ø =0.5 to match the highest value of no.  

 

 

  

 

 

The range of the ktd / ko was selected to start from a value of 1 (when there are no 

changes in n and Ø, such that ktd = ko). The highest value of 1000 was chosen by 

assuming that the highest value of ktd would be 1000 times the ko value. 
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The relationship shows that ktd / ko (simply ktd) increased with an increase in Ø for 

all the no values. The behavior of the soils with different initial porosities is similar until 

the value of Ø is approximately 0.4. Beyond this value, it can be seen that for the same 

value of Ø, the permeability value increases with higher value of no.  

This model has a limit, which occurs when the value of no + Ø = 1. This value is 

not feasible because in this instance, n =1 (n = Vv / Vt). In other words, all the soil 

volume turns into voids (all the solids have been dissolved). 

6.2.1.1.3 Using Baena and Toledo, 2014 model for untreated soils results  

 In this section, the Baena and Toledo (2014) model was used to predict the 

relationship between the coefficient of permeability and the volume of dissolved gypsum, 

which was represented by the value of Ø for high and medium gypsum soils.  

For the test results, the measured k/the initial k was plotted against the values of 

Ø, whereas the same values of Ø were plugged into the model with an initial porosity of 

no = 0.39 for high gypsum soil, and no = 0.42 for the medium gypsum soil to predict ktd / 

ko.  

The results and the model are both shown in Figure 6.6. It shows that the tests 

results and the Baena and Toledo (2014) model do not match. The measured permeability 

for both soils decreased with an increase in Ø, whereas the predicted permeability using 

the model increased with an increase in Ø.  

In their study, Baena and Toledo (2014) stated that when the dissolution rate is 

very high, a “post-dissolution compaction” will occur in the insoluble solid material, and 

the model will give an “overestimated ktd/ko ratio”.     
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High gypsum soil 

Medium gypsum soil 

Figure 6.6 Baena and Toledo, 2014 model for high and medium gypsum soils. 

  

 

 

 

 

 

 

 

 

 

 

6.2.1.1.4 New modification on Baena and Toledo, 2014 model 

As shown in the previous section, the model did not represent the actual test 

results, and therefore, to consider the post-dissolution compaction, which will occur in 

soil with high soluble solids dissolution, a new approach was chosen to modify the Baena 

and Toledo (2014) model. The new approach was to assume that the volume of the 

dissolved particles would reduce the porosity (after dissolving), which is the opposite of 

the Baena and Toledo (2014) assumption.  
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This assumption was chosen because the results of our study showed that with 

gypsum dissolution, a reduction in the coefficient of permeability, k, occurred. 

   𝑛 =  𝑛𝑜 −  ∅                                                                         

𝑘𝑡𝑑 = 𝑘𝑜
(1−𝑛𝑜)2(𝑛𝑜−∅)3

𝑛𝑜
3(1−𝑛𝑜+∅)2                                              (Eq. 6.5) 

 To test the modified model with the new assumption, the previous ranges of Ø 

and no, which were used to test the original model, were selected to plot the relationship 

between ktd/ko and Ø for different values of no, which are shown in Figure 6.7.  

 

 

 

 

  

 

Applying the Ø and no values showed that ktd/ko decreased with an increase in Ø 

for all the selected no values. With the new assumption, the model is more sensitive to Ø 

changes, which can be seen by comparing the two figures before and after the application 

of the new assumption. Before the change, the behavior of all the no curves was almost 

the same for Ø values until the value of Ø was approximately 0.4, whereas in the case of 

the new assumption, the behavior starts to change when the value of Ø is approximately 

0.1.  

Figure 6.7 The modified Baena and Toledo, 2014 model for a specific range  

of no and Ø. 
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From the relationship of no and ktd/ko, it can be inferred that the range of Ø for 

granular soil is 0 – 0.45. Within this range, k will decrease with an increase of Ø. 

Moreover, for each no curve, the range of Ø was different from other no curves. For 

example, for no = 0.3, the range of Ø was from 0 – 0.29 because at Ø = 0.3, the value of 

ktd/ko was equal to zero, meaning that the value of k = 0, which is not feasible.    

This model has a limit, which occurred when Ø = no because at this value, k = 0 

and beyond this value, the values of ktd/ko would be negative. Knowing that Vt is 

constant, when Ø = no, Vs (volume of the dissolved solids)  = Vv (the volume of voids in 

the sample), which means that the volume of the solids that have been dissolved is equal 

to the volume of voids in the sample.  

Theoretically, based on the new assumption of n = no – Ø, all the voids are filled 

with solids due to post-compaction, which occurred due to dissolution, n reached a value 

of zero, and no more voids were in the samples to allow water to flow. This instance 

would result with a coefficient of permeability that equals zero, which is definitely not 

feasible. 

6.2.1.1.5 Using the modified Baena and Toledo, 2014 model for untreated soils 

results  

The same values of Ø were plugged into the modified model to see if the model 

provided a close fit to the test results, which is shown in Figure 6.8 for both high and 

medium gypsum soils. In general, the modified model has a reduction trend, which can 

be seen from the above figure, and it has a relatively good fit for a small range of Ø (as 

shown for medium gypsum soil). However, it shows lower values when comparing both 

test results.  
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High gypsum soil 

Medium gypsum soil 

Figure 6.8 Using the modified Baena and Toledo, 2014 model for high and 

medium gypsum soils.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 In the high gypsum soil, the modified model provided a negative value for Ø 

values of 0.43 and 0.45, which cannot be shown on logarithmic scale. In the case of 

medium gypsum soil, the gap between the actual results and the modified model was less 

than that of high gypsum soil. Nevertheless, the modified model did not exactly fit the 

actual test results. The assumption for this modified model was that all the volume of the 

dissolved solids (which, in this case, is gypsum) would be filled with insoluble solids. 
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From Figure 6.8, it can be concluded that this assumption was not 100% accurate 

because if all the volume of the dissolved solids (Ø) was filled completely with insoluble 

solids, the modified model would be fit exactly with the actual test results for both soils.  

6.2.1.1.6 Account for partial Ø in the modified Baena and Toledo, 2014 model  

The previous findings indicated that the volume of the dissolved solids was 

partially filled with insoluble solids, i.e., we cannot subtract the entire Ø from the initial 

porosity (no). Therefore, another modification was done on the model by assuming that a 

partial value of Ø (Øp) would be subtracted from the initial porosity (no). Different values 

of Øp were plugged into the modified model to see what the value would be, which gives 

the closest fit for the actual test results for both soils and was plotted in Figure 6.9.  

∅𝑝 =  % ∅ 

𝑛 =  𝑛𝑜 − ∅𝑝 

𝑘𝑡𝑑 = 𝑘𝑜
(1−𝑛𝑜)2(𝑛𝑜−∅𝑝)

3

𝑛𝑜
3(1−𝑛𝑜+∅𝑝)

2                                   (Eq. 6.6) 

   The test data using the new modification fits the model well in both soils, as 

can be seen from Figure 6.9. In the case of high gypsum soils, the model shows that only 

5% of the volume of the dissolved and leached solids (gypsum) was filled with insoluble 

solids and participated in the reduction of the k value. however, the self-collapsing of the 

soil sample, which occurred due to the very high rate of dissolution, was the major 

contributing factor to the reduction of the coefficient of permeability. For medium 

gypsum soil, the behavior was slightly different.  
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High gypsum soil 

Medium gypsum soil 

Figure 6.9 Using the modified Baena and Toledo, 2014 model with Øp for high  

and medium gypsum soils. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, the model revealed that 65% of the volume of the dissolved solids 

was filled with the insoluble solids, in addition to the self-collapsing of the soil sample. 

Both of these factors resulted in the reduction of the coefficient of permeability. 
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 6.2.2 Treated soils test 

6.2.2.1 First trial 

 In this trial, the same constant head cell was used during the test. High and 

medium gypsum samples were prepared by mixing the soil with 6% asphalt emulsion, 

curing, and then compacting in the permeameters. Figure 6.10 shows the relationship of 

the k value and the leachate volume. 

 

 

 

 

 

 

 

 

The k value in high gypsum soil fluctuated with the leachate, but toward the end, 

it has a decreasing trend. Whereas, the k value was relatively constant in medium gypsum 

soil, although much lower than the high gypsum soil, with Lower amounts of water 

flowed through sample within the same time period. EC measurements are shown in 

Figure 6.11. 

 

Figure 6.10 Coefficient of permeability for high and medium gypsum soils treated 

with 6% asphalt emulsion. 
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Figure 6.12 Gypsum dissolution for high gypsum soil treated with 6% asphalt emulsion. 

 

 

 

 

 

 

 

 

Less EC fluctuation was observed in medium gypsum soil compering to the high 

one. Medium gypsum soil had relatively EC of approximately 2000 uS/cm. While the EC 

values for though high gypsum soil experienced greater variability, but it was also 

approximately 2000 uS/cm. No decrease in the EC with water flowing was observed. 

With higher amounts of water flowing through the high gypsum soil, these values were 

used to estimate the gypsum dissolution as shown in Figures 6.12 and 6.13. 

 

 

 

 

 

 

Figure 6.11 EC for high and medium gypsum soils treated with 6% asphalt emulsion. 
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In high gypsum soil, Figure 6.12 shows that treatment by mixing, curing, and then 

compacting the sample in the cell provided a slight reduction in gypsum dissolution 

towards the end of the test by comparing the two dissolution estimates with the maximum 

potential rate.    

For medium gypsum soil (Figure 6.13), the results showed that the dissolution 

was lower than high gypsum soil, but the rate of the dissolution was the same as the 

maximum gypsum rate until the end of the test. 

6.2.2.1.1 Using the modified Baena and Toledo, 2014 model for first trial samples 

 To investigate the effectiveness of the first trial treatment on the coefficient of 

permeability for both treated soils, the modified Baena and Toledo (2014) model (Øp 

modification) was plotted against Ø values for both soils (high and medium gypsum 

soils). The test results represent the actual k/ko values, whereas the modified model was 

used to calculate the theoretical k/ko values, as shown in Figure 6.14.  

 

Figure 6.13 Gypsum dissolution for medium gypsum soil treated with 6% asphalt emulsion. 
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High gypsum soil 

Medium gypsum soil 

Figure 6.14 Using the modified Baena and Toledo, 2014 model with Øp for trial  

one treated high and medium gypsum soils. 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the first trial treatment, the modified model also was almost matched the 

actual test values but with different Øp values in high gypsum soil and medium gypsum 

soils. The value of Øp that was plugged into the modified model for high gypsum soil was 

approximately 55% of Ø, which provided a curve that represented the average test values, 

as shown in Figure 6.14. This results suggests that approximately 55% of the dissolved 

solids were filled with insoluble solids, which resulted in reductions in the porosity and 

the coefficient of permeability.  
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On the other hand, a value of Øp of approximately 95% of the Ø provided a model 

fit that is almost exactly the same as the actual test results, which suggests that 

approximately 95% of the volume of dissolved solids was filled with insoluble solids and 

reduced the intergranular voids and the coefficient of permeability. 

 Nevertheless, the high rate of dissolution and the post-dissolution collapsing was 

the most responsible factor in void reduction for high gypsum soil, while in the medium 

gypsum soil, the filling of the volume with insoluble solids was the major factor, which 

reduced the coefficient of permeability. 

 Overall, these findings indicated that using the Trial 1 approach to treat both soils 

was not a good option to prevent dissolution. Although there was a reduction in 

permeability, this reduction was related to the post-dissolution compaction and 

collapsing, which was also seen in the untreated soil tests.   

 6.2.2.2 Second trial 

Based on the first trial results, and since the approach of mixing, curing, and 

compacting did not mitigate gypsum from dissolving, a flexible wall permeameter was 

used by combining the flexible wall ASTM D5084-16a standard (for confining the 

sample only) and the constant head ASTM D 2434 – 68 standard for constant head 

permeability testing. 

In this case, the samples were mixed with 18% asphalt emulsion, compacted, 

cured, and then placed in a membrane inside the cell, as can be seen in Figure 6.15. The 

same measurements were also taken, Figure 6.16 shows the k value versus the leachate 

volume.  
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Figure 6.16 Coefficient of permeability for high and medium gypsum soil 

treated with 18% asphalt emulsion (flexible wall method). 

 

Molding Curing Permeability cell 

Sample setup Confining pressure 

Figure 6.15 Soil sample molding, curing, and setup. 
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In this type of treatment, medium gypsum soil started with a k value that was 

higher than the high gypsum soil. The k value decreased in both soils with an increase in 

water flow, but in this case, high gypsum soil prevented more water from flowing 

through the system, compared to medium gypsum soil. Towards the end of the test, no 

more water leached out from the high gypsum soil sample. These results were linked to 

the fact that there were physical changes that occurred in the soil structure between the 

gypsum particles and the asphalt binders. The more available gypsum in the soil, resulted 

in more these physical attraction, as shown in Fan et al. (2019).  

They found that mixing different amounts and types of calcium sulfate whiskers 

with different types of asphalt binders improved the workability and the strength of the 

binders. These improvements increased with an increase in the calcium sulfate whiskers. 

The EC measurements are shown in Figure 6.17. It can be seen that high gypsum soil 

started with high EC and then reduced to a constant value. However, towards the end, the 

EC fluctuated with a very limited amount of water leaching of the sample. 

 

 

 

 

 

 

 
Figure 6.17 EC for high and medium gypsum soil treated with 18% asphalt 

emulsion (flexible wall method). 
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 The medium gypsum soil achieved a constant value until approximately 35L 

of leachate. Then, a sudden drop in the EC occurred. Afterwards, the EC showed a 

constant trend. Gypsum dissolution was estimated from the EC and is shown in Figures 

6.18 and 6.19. For high gypsum soil, even though gypsum dissolves with water flow, the 

dissolution was less than the maximum potential that was predicted from the general 

gypsum dissolution rate. 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 6.18 Gypsum dissolution for high gypsum soil treated with 18% asphalt 

emulsion (flexible wall method). 

 

Figure 6.19 Gypsum dissolution for medium gypsum soil treated with 18% asphalt 

emulsion (flexible wall method). 
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In medium gypsum soil, the asphalt emulsion prevented the gypsum from 

dissolving, according to the gypsum rate, but this improvement did not start from the 

beginning, as shown by the cumulative gypsum dissolution. After 36.5L of leachate, 

some gypsum dissolved, but it was less than 0.5 g in each individual measurement.  

Many different types of treatments for various soil types with different amounts of 

gypsum showed reduction in soil permeability reduced. Aziz and Ma (2011) treated two 

types of soils with fuel oil: clayey soil with gypsum content of approximately 26% and 

sandy soil with gypsum content of approximately 51%. In both soils, they found a 

reduction in the permeability and water leaching, which was related to the rearrangement 

of the soil particles and resulted in closuring of more voids due to the lubrication effect of 

the fuel oil.        

Alsafi et al. (2017) found that treating silty sand, which has a gypsum content of 

approximately 13%, with activated fly ash will reduce the soil permeability. More 

activated fly ash resulted in greater reduction in the coefficient of permeability. This 

result was related to the modifications in the microstructure system of the soil and the 

reduction in the soil’s voids due to the formation of the geopolymers gels and ettringite. 

6.2.2.2.1 Using the modified Baena and Toledo, 2014 model for second trial samples 

 Figure 6.20 shows the use of the modified Baena and Toledo (2014) model for the 

second trial treatment for both soils. In this case, the highest Øp value, which was 100% 

of the actual Ø value, was plugged into the modified model for both soils samples. In this 

case, the use of the modified model showed that this approach was the most appropriate 

to treat these soils.  
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The results of the gypsum dissolution measurements previously revealed that this 

approach was very good in reducing gypsum dissolution, and these results clearly show 

that the reduction in the coefficient of permeability was not related to gypsum dissolution 

or the internal rearrangement of the soil structures. These results show that the adhering 

and bonding between the calcium sulfate molecules and the asphalt binders was the major 

factor that controlled the reduction in permeability.  

High gypsum soil 

Medium gypsum soil 

Figure 6.20 Using the modified Baena and Toledo, 2014 model with Øp for trial  

two treated high and medium gypsum soils. 
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 As shown in Figure 6.20, even when the entire Ø values were plugged in for both 

soils, the modified model provided values that were higher than the actual k/ko curves, 

which means that the use of the asphalt emulsion improved the soil structure much more 

than the previous trial, by lowering the volume of voids and the porosity to a magnitude 

that changed the soil structure from sand to silt or even to clay, based on the coefficient 

of the permeability.     

6.3 Summary and conclusions 

This work was performed in two sections. The first section covers the constant 

head permeability test for two untreated samples: high and medium soils with gypsum. 

The test included leachate collection and gypsum dissolution measurements. 

The second section covered the effect of moving water on the coefficient of 

permeability and gypsum dissolution for high and medium gypsum soils treated with 6% 

and 18% asphalt emulsion and cured at 35°C until they reached a constant weight.  

The 6% treatment was performed by using the constant head procedure, whereas 

the 18% treatment was performed using a modified procedure by placing the sample in 

flexible wall permeameter with a confining pressure of 5 psi. However, the permeability 

test was performed by using the constant head method procedure with a head of 17.8 cm. 

The leachates were also collected for gypsum dissolution measurements.  

1- Water flow has a significant impact on gypsum dissolution, but this dissolution 

reduces the coefficient of permeability with time, since gypsum dissolution 

changes the soil structure, and the movement of the large gypsum particles will 

close the micro tubes inside the soil. 
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2- The treatment approach affects the water flow and gypsum dissolution, which was 

clear when the approach of mixing, curing and then compacting was used. This 

approach did not change the amount of gypsum dissolution, compared to the test 

on the untreated samples. 

3- Using the approach of mixing, compacting, and curing had a clear effect on the 

reduction of gypsum dissolution, each soil exhibited different behavior. 

- In high gypsum soil, this approach reduced gypsum dissolution, not by 

preventing it from dissolving, but by reducing the k value such that there 

was no flow toward the end of the test. 

- In medium gypsum soil, this approach prevented gypsum dissolution by 

reducing the amount of gypsum that leached from the sample. However, 

this prevention did not start from the beginning because the value of EC 

started high and remained constant until approximately 35L of water 

flowed through the sample. Afterwards, a sudden drop occurred in the EC.  

4- Using the modified Baena and Toledo (2014) model helped to predict what 

occurred in the microstructure of the soil when the asphalt emulsion was used in 

both trials and how the second trial approach improved the reductions in gypsum 

dissolution and the coefficient of  permeability.  
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Chapter 7 

A Comparison Between the Unconfined Compressive Strength (UCS) 

for Gypseous and Gypsiferous Sandy Soils Treated with Activated Fly 

ash, Asphalt Emulsion, and Portland Cement 

7.1 Materials and methods  

7.1.1 Soils 

 High and medium gypsum poorly graded sand soils (S1 and S2), as described in 

previous chapters were used in this study.  

7.1.2 Activated fly ash 

 Class F Fly ash activated with 12 M potassium hydroxide (KOH) solution, as 

described in Chapter 4, was used for fly ash treatment. 

7.1.3 Asphalt emulsion 

 Slow setting NTSS-1HM, produced by BLACLIDGE EMULSION, Inc. (Greer, 

South Carolina, USA), as described in Chapter 5, was used for asphalt emulsion 

treatment. 

7.1.4 Portland cement 

 Type I/II Portland cement was used for cement treatment. 
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7.1.5 Specimen preparation and curing 

 The preparations and curing for specific specimens used in the wetting-drying 

tests, according to the ASTM D559/D559M – 15 standard were described in Chapters 4 

and 5 for specimens for activated fly ash, asphalt emulsion, and Portland cement 

treatments. 

7.1.6 Unconfined compressive strength (UCS) test  

The procedure outlined in the ASTM D2166/D2166M – 16 standard was used to 

measure the UCS for N1 specimens that survived all the wetting-drying cycles, according 

to ASTM D559/D559M – 15.  A Jeo Jac automated device was used, with a strain rate of 

1%/min. (1mm/min.). 

7.1.7 Young’s Modulus (E) 

 The secant modulus of elasticity was used to estimate the modulus of elasticity 

from the stress-strain relationship in each case. The measurements were done in a range 

of 30-70% of the maximum strength to ensure that the readings were taken within the 

elastic zone.  

7.2 Results and discussion 

7.2.1 Unconfined compressive strength (UCS) and Young’s Modulus (E) for 

specimens treated with activated fly ash 

As shown in Chapter 4, few specimens from both soils survived the twelve 

wetting-drying (W-D) cycles. 

Table 7.1 shows the UCS and E values for these specimens. Figure 7.1 shows the 

only specimen for high gypsum soil that survived the W-D cycles, which was treated 

with 30% activated fly ash and cured for 28 days.  
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Table 7.1 UCS and E for W-D survived specimens (activated fly ash). 

Specimen No. 7 days curing 28 days curing 

UCS (kPa) E (MPa) UCS (kPa) E (MPa) 

S1,F30%,N1 --- -- 973.36 104.94 

S2,F20%,N1 ---- ------ 170.83 48.37 

S2,F30%,N1 635.29 34.16 371.48 27.87 

F%: Activated fly ash percentage. 

 

 

 

 

 

 

 

 

Medium gypsum soil has three specimens that survived the W-D cycles. For an 

activated fly ash percentage of 20%, the specimen that was cured for 28 days, shown in 

Figure 7.2, survived the W-D cycles, and for the 30% activated fly ash treatment, both 

specimens that were cured for 7 and 28 days survived the W-D cycles, as shown in 

Figure 7.3. 

 

 

 

Figure 7.1 UCS for high gypsum soil specimen treated with 30%  

activated fly ash and cured for 28 days. 
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Figure 7.2 UCS for medium gypsum soil specimen treated with 20%  

activated fly ash and cured for 28 days. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in the figures above, higher gypsum soil provided the highest 

compressive strength and the highest Young’s Modules. The failure happened suddenly 

with a very steep curve, which suggests that the treatment of highly gypsum soil with 

activate fly ash behaved as a stiff material (brittle failure mode). 

Figure 7.3 UCS for medium gypsum soil specimens treated with 30%  

activated fly ash and cured for 7 and 28 days. 
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While the relationship between the activated fly ash and the compressive strength 

for medium gypsum soil showed that the strength generally increases with increased 

activated fly ash increase, the results of the specimens that were treated with 30% 

activated fly ash showed that a decrease in strength with an increase in curing period, as 

shown in Figure 7.3. In this study, the formation of potassium aluminosilicate hydrate K-

A-S-H gel by activating Class F fly ash with potassium hydroxide (KOH) enhanced the 

strength of both soils. The formation of the geopolymer gel (i.e., aluminosilicate hydrated 

A-S-H or sodium aluminosilicate hydrate N-A-S-H) inside the soil voids resulted in more 

compacted microstructures, which improved the overall strength of the soil (Van 

Deventer et al., 2015; Alsafi et al., 2017). 

 Higher gypsum content in the soil provides the highest compressive strength, as 

can be observed by comparing high gypsum soil with the medium gypsum soil for 

specimens that were treated with 30% activated fly ash and cured for 28 days. This result 

is related to the formation of ettringite ((CaO)3(Al2O3)(CaSO4)3·32H2O). Even at early 

stages of curing, gypsum, which is CaSO4.2H2O, is the source of calcium sulfate 

(CaSO4), and the Class F fly ash used in the study is the source of calcium aluminate 

because it has approximately 21.2% aluminum oxide (Al2O3), and 5.3% of calcium oxide 

(CaO).  

From mixing a range of gypsum dosage (1-6%) with lime-treated sand, Jha and 

Sivapullaiah, (2017) found that the sulfate (from gypsum) consumption process during 

ettringite formation also leads to the production of silica (from the sand and the fly ash). 

 

https://en.wikipedia.org/wiki/Calcium_aluminates
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More silica results in the formation of additional calcium-silicate-hydrate (C-S-H) 

gel and calcium-aluminate-silicate-hydrate (C-A-S-H) gel due the use of the alkaline 

activated fly ash. They also proved that ettringite formation results in a more compacted 

and reinforced structure in the sand that was treated with activated fly ash, which 

provides more soil strength.  

However, they found that soil strength was controlled by the amount of gypsum in 

the soil and the curing period. The formation of additional ettringite that exceeds the 

amount of voids in the soil will lead to an expansion of the soil structure and a reduction 

in its strength.  

In this study, a reduction in the compressive strength occurred in medium gypsum 

soil when additional curing was time used, which was related to more ettringite had been 

formed, such that it exceeded the volume of the voids/pores in the soil (Figure 7.3).  

7.2.2 Unconfined compressive strength (UCS) and Young’s Modulus (E) for 

specimens treated with asphalt emulsion 

Three different percentages (6%, 12%, 8%) of anionic slow setting asphalt 

emulsion were used to treat both sandy gypsum soils, and the specimens were subjected 

to W-D cycles, as discussed in Chapter 5. The unconfined compressive strength (UCS) 

was measured, and the Young’s Modulus (E) was calculated for each test. Table 7.2 

shows the UCS and E results for all specimens that survived all twelve cycles. Figures 

7.4 and 7.5 show the results of the unconfined compressive strength (UCS) for both high 

and medium gypsum soils that were treated with asphalt emulsion.   
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Figure 7.4 UCS for high gypsum soil’s specimens treated with  

asphalt emulsion. 
 

Figure 7.5 UCS for medium gypsum soil’s specimens treated with  

asphalt emulsion. 
 

Table 7.2 UCS and E for W-D survived  

specimens (asphalt emulsion). 

Specimen No. UCS (kPa) E (MPa) 

S1,6%,N1 200.47 18.21 

S1,12%,N1 701.33 35.04 

S1,18%,N1 1353.34 47.14 
1S2,6%,N1 ------- ------- 

S2,12%,N1 543.51 40.06 

S2,18%,N1 970.80 50.81 

%: Asphalt emulsion percentage. 
1 This specimen did not survive (failed in cycle nine). 
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Figure 7.6 UCS failure mode for high and medium gypsum soils’  

specimens treated with asphalt emulsion. 

S1,12%,N1 S2,18%,N1 

 From the figures above, it can be seen that the correlation between the unconfined 

compressive strength (UCS) and the asphalt emulsion percentage was positive. Moreover, 

by comparing both soil results, it is clear that with the increase in gypsum content, the 

UCS also increases for each asphalt emulsion percentage. 

Also, by observing the failure type for each specimen, it can be determined that 

the failure mode is semi-plastic, as shown in Figure 7.6, which shows failure mode 

examples for two specimens.       

 

 

 

 

 

 

 

 

 

 

 

 

Taha et al. (2008) and Ahmed (2014) used cut-back RC-70 and asphalt emulsion, 

respectively, to treat different types of soils. They found an optimum asphalt emulsion 

content, at which point the soil strength began to decrease.  
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In this study, the strength increased with an increase in gypsum content (by 

comparing both high gypsum soil with medium gypsum soil) for each asphalt emulsion 

percentage. No previous study that showed these close observation was found until 

development of this work. 

 However, a study conducted by Fan et al. (2019) investigated the effects of 

mixing three different types of calcium sulfate whiskers with two different types of 

asphalt binders on the performance of asphalt binder. They showed that modifications 

were made on the asphalt binders when mixed with calcium sulfate whiskers. 

In the dynamic shear rheometer (DSR), which is a test that is used to find the 

shear modulus (G) and the phase angle (δ) to calculate the rutting factor (G/Sin(δ) for 

both types of asphalt binders treated with three different types of calcium sulfate 

whiskers, they proved that the rutting factor, which is a property that shows the rutting 

resistance performance (i.e., higher rutting factors suggest higher rutting resistance), 

increased with an increase in calcium sulfate content.  

Moreover, the bending test rheometer (BBR) was used to evaluate the crack 

resistance performance (the creep stiffness S) of the modified asphalt by measuring the 

bending moment under low temperature. Their results showed that higher calcium sulfate 

content yielded highest creep stiffness S.  

Although higher S values result in lower temperature crack resistance, the 

stiffness of the binders continued to increase with an increase in calcium sulfate content. 

To investigate the microstructure changes in the asphalt binders, they used the following 

tests:  
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The use of X-Ray Diffraction (XRD) proved that there was no formation of new 

crystalline phases due to the mixing of asphalt and the calcium sulfate whiskers and that 

all the effects of the modifications effects were related to the physical properties that 

were represented by the “cross-link” of the whiskers into the binders to form a new 

structure to resist the external forces.  

This result has also been supported by the findings of another test called the 

Fourier transform infrared (FTIR). This test showed that all the modifications were 

related to physical binding and not any chemical reactions. The last test was the Scanning 

Electron Microscopy (SEM) images, which showed that the calcium sulfate whiskers 

created a “network-reinforced structure” with the asphalt binder by distributing it in 

different directions and locations inside the binder network.  

They explained that this result was related to the absorption process, which 

occurred at the rough surfaces of whiskers. These whiskers absorb the light oil of the 

binder, the steric acid coupling agent, and the silane coupling agent from the binders, 

which create very high adhesion between the binder and the whisker.  

The results of Fan et al. (2019) state that higher calcium sulfate content mixed 

with the asphalt provided higher strength in the modified asphalt, which was related only 

to the physical mechanism and not any chemical reactions. These results support our 

study because we found that higher gypsum content provided higher UCS, which was 

related to interlocking and adhesion that occurred in the microstructure phase between the 

asphalt binders and the calcium sulfate molecules.   

 



www.manaraa.com

140 
 

7.2.3 Unconfined compressive strength (UCS) and Young’s Modulus (E) for 

specimens treated with Portland cement type I/II 

As discussed in Chapter 5, N1 and N2 specimens of sandy soils with gypsum 

treated with 9% Portland cement type I/II and mixed with 9% water content were 

prepared and used as reference specimens because the wetting-drying ASTM D559 

standard was designed for soils treated with cement. These specimens were also 

subjected to twelve wetting-drying cycles, and all of them survived. N1 specimens for 

both soils were placed in a Wykeham Farrance (WF) compression test machine to 

measure the unconfined compressive strength (UCS).  

In this case, the Jeo Jac automated device was not used because during the test of 

the high gypsum soil specimen, it reached its capacity without failure. Table 7.3 shows 

the UCS results for the cement treated specimens.  

Table 7.3 UCS and E for W-D survived  

specimens (Portland cement). 

Specimen No. UCS (kPa) E (MPa) 

S1,9%,N1 5052.06 412.14 

S2,9%,N1 2243.84 ------- 

Figure 7.7 shows that the failure mode in both specimens was a brittle failure. The 

failure planes occurred close to the top and on the outer edges of the specimens. The 

results of the cement treatment showed that the strength of high gypsum soil was higher 

than (approximately double) the medium gypsum soil. Moreover, the failure mode 

showed that on both soils, the core of the specimen was harder than the outside, which 

can be seen as the failure started at the specimen circumference. 
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Figure 7.7 UCS failure mode for high and medium  

gypsum soils’ specimens treated with Portland cement. 

S1,9%,N1 S2,9%,N1 

    

  

 

 

 

 

 As discussed earlier, these specimens went through twelve cycles of wetting-

drying, and these cycles improved their strength due to the continued process of cement 

hydration. The increased strength was related to the formation of ettringite and/or 

thaumasite and these hydrous minerals were primarily related to the availability of water 

(hydration process).  

Moreover, the presence of gypsum (which works as an activator for the 

pozzolanic reaction in the soil structure) increased the formation of ettringite, along with 

both the CSH and CASH gels (Jha and Sivapullaiah, 2017). Thus, the more gypsum 

content in the soil, the highest the strength will be, which was exactly what was found by 

comparing the results of both soils. 

7.3 Summary and conclusions 

This chapter discussed a comparison between the unconfined compressive 

strength (UCS) for high and medium gypsum sandy soils treated with different additives, 

which include activated fly ash, asphalt emulsion, and Portland cement.  
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The effects of each individual additive on the UCS for the treated specimen was 

investigated, and the relationship between gypsum content and UCS also studied. The 

modulus of elasticity (E) for each case was estimated from the UCS results. 

1- By comparing the results, it is obvious that the heights UCS was achieved by 

treating both soils with Portland cement. However, the use of cement to treat soil 

with gypsum leads to sulfate attack, particularly during wetting, due to the 

availability of the sulfate ion from gypsum. This process will degrade the matrix 

of the stabilized materials and result in large voids and high permeability, which 

may lead to more gypsum dissolution, higher compressibility, and collapsible 

potential in the soil (Alsafi et al., 2017).   

2- The use of activated fly ash is a good alternative to cement to treat soil with 

gypsum, and in this study, it had a good stabilization properties with sandy soils, 

even for very high gypsum soil (93%). Moreover, the strength of the soil 

increased with an increase in the gypsum content. The problem with this 

treatment was the continued formation of ettringite with the increase in the curing 

period. In the field, this process will continue as long as there is available 

moisture in the soil.  

The formation of additional ettringite that exceeds the volume of voids in the soil 

structure will result in expansion, soil structure deterioration, and strength 

reduction. As shown in Chapter 5, very few specimens treated with activated fly 

ash survived the wetting-drying cycles.  

3- Finally, the use of asphalt emulsion showed very good resistance for the wetting-

drying cycles. Almost all the specimens survived all the twelve cycles. 
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For the UCS of the soil, the use of the asphalt emulsion improved the soil strength 

(i.e., the higher asphalt emulsion produced the highest soil strength). This increase in 

strength was related to physical binding and interlocking, which resulted in very high 

adhering forces between the calcium sulfate molecules from gypsum and the asphalt 

binders, after reaching the coalescence stage. From all of the above, it was concluded that 

the most suitable material that can be used to treat sandy soils with gypsum (even for 

very high gypsum content) is the asphalt emulsion.  
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Chapter 8 

Conclusions and Recommendations 

8.1 Conclusions 

From all the studies that have been presented in this dissertation, the following 

conclusions can be listed. 

Conclusion 1: Sands with medium to high gypsum experience much lower 

volume change and mass losses during wetting-drying cycles when mixed with 

asphalt emulsion than activated fly ash. 

Gypsum sands treated with asphalt emulsion or activated fly ash shrink, with a 

few exceptions, as the number of wetting-drying cycles increases. The degree of 

shrinkage is reduced as the dosage rate increases.  

At the highest dosage rate of 30% activated fly ash, the lowest volume change 

at the end of the test was -8.8% (shrinkage) for medium gypsum sand cured for 7 days 

and +3.0% (expansion) for high gypsum sand cured for 28 days. However, neither 

meets the volume change target of ±2.5%.  

At the highest dosage rate of 18% asphalt emulsion, the lowest volume change 

at the end of the test was -1.9% for medium gypsum sand and -2.8% for high gypsum 

sand. It should be noted that the lowest volume change of -2.2% for high gypsum 

sand was achieved at a dosage rate of 12% asphalt emulsion. These findings show that 

asphalt emulsion in dosage rates of 12-18% can control the volume change to within 

±2.5%. 
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Activated fly ash was unable to control mass loss of sands with medium and high 

gypsum contents. Specimens with medium gypsum content suffered mass loss of at least 

45% for dosage rate of 30%. None of the specimens with high gypsum content survived 

the complete set of 12 wetting-drying cycles, and thus a final mass loss could not be 

calculated.  

At the highest dosage rate of 18% asphalt emulsion, the mass loss at the end of 

the test was 5% for medium gypsum sand and 4% for high gypsum sand. At this rate, the 

mass loss is less than the target of 7% and even lower than the reference specimens which 

has been treated with Portland cement.  

Conclusion 2: The rate and amount of gypsum dissolution in sands with medium to 

high gypsum can be reduced when mixed with asphalt emulsion or activated fly ash. 

For specimens treated with activated fly ash and survived all the 12 wetting-

drying cycles, the lowest gypsum dissolution rate was approximately 1 g/L and the lowest 

cumulative dissolved gypsum was approximately 8 g for medium gypsum sand treated 

with 30% activated fly ash and cured for 7 days.  

For high gypsum sand, the gypsum dissolution rate was approximately 1.1 g/L 

and the cumulative dissolved gypsum was approximately 7 g for specimen treated with 

30% activated fly ash and cured for 28 days.  

Medium gypsum sand treated with 18% asphalt emulsion showed the lowest 

gypsum dissolution rate of approximately 0.1% with an accumulative dissolved gypsum 

of 0.7 g, whereas, for high gypsum sand, the lowest gypsum dissolution rate of 

approximately 0.3% with an accumulative dissolved gypsum of 5 g was obtained by 

treating the soil with 18% asphalt emulsion.  
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As can be seen from these results, asphalt emulsion is more effective to decrease 

gypsum dissolution when compared to the activate fly ash. It is important to mention that 

the general gypsum dissolution rate is about 2.6 g/L at 25ºC and a pressure of 0.101 MPa. 

Conclusion 3: A non-linear reduction in the permeable porosity was obtained when 

both soils treated with an increase dosage of asphalt emulsion. 

The lowest permeable porosity in both soils was accomplished when they treated 

with 18% asphalt emulsion. In medium gypsum sand, the lowest permeable porosity was 

approximately 0.06 compared to approximately 0.19 for specimen treated with Portland 

cement. For high gypsum sand, the lowest permeable porosity was approximately 0.04 

compared to 0.18 for specimen treated with Portland cement.  

These findings are related to the cohesion and physical attraction between gypsum 

molecules and asphalt binders. Moreover, the coalescence process, which occurred after 

all the water of the emulsion evaporated during curing stage, helped to close the voids 

inside the specimen and that prevented more water form flowing through the specimen.   

Conclusion 4: Untreated and asphalt emulsion treated samples showed a reduction 

in the soil coefficient of permeability (k) with the increase in the water volume, and 

the approach of mixing soil with asphalt emulsion, compacting, and curing achieved 

the lowest k and gypsum dissolution. In addition to that, the modified Baena and 

Toledo (2014) model provided a good prediction for the coefficient of permeability.  

The coefficient of permeability (k) for untreated medium gypsum sand decreased 

from 8.5x10-3 to 1.9x10-3 cm/sec., with a total amount of dissolved gypsum of 

approximately 105 g, which represented approximately 48% of total amount of gypsum 

in the sample. 
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The value of k for untreated high gypsum sand decreased from 3.5x10-2 to  

9.9x10-3 cm/sec., with a total amount of dissolved gypsum of approximately 490 g toward 

the end of the test, which represented approximately 79% of total amount of gypsum in 

the sample. The reduction in k values is related to the post gypsum dissolution 

compaction. Also, it should be noted that the duration of these tests was approximately 

one month, meaning that if these tests were allowed to be open for longer time, more 

gypsum would be dissolved. 

On the other hand, the approach of mixing, compacting, and curing the 18% 

asphalt emulsion samples of both soils showed the lowest k values and gypsum 

dissolution. For treated medium gypsum sand, the value of k decreased from 1.3x10-3 to 

1.2x10-5 cm/sec., with a total amount of dissolved gypsum of approximately 71 g, which 

represented approximately 51% of total amount of gypsum in the sample.  

For the case of the treated high gypsum sand, the value of k decreased from 

2.0x10-4 to 3.2x10-7 cm/sec., before the sample reached a state of no more water leached 

out of the sample, the total amount of dissolved gypsum was approximately 37 g, which 

represented as approximately 9% of total amount of gypsum in the sample. The treated 

samples test was done in flexible wall permeability cells, but with constant head 

procedure. Moreover, the duration of these tests was approximately 10 months, which is 

longer than the untreated samples test. 

This approach of treatment showed that more gypsum can be prevented form 

dissolving by increase the dosage of the asphalt emulsion. Also, the process of 

compacting and then curing resulted in more adhering and physical attraction between 

asphalt binders with soil and gypsum particles. 
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From the trials of Baena and Toledo (2014) model on untreated soils samples, the 

results showed that the model did not match the actual testing results and provided a 

trend of an increase in the coefficient of permeability for both soils with the increase in 

the dissolved gypsum volume, which is the opposite of the tests results, as this model has 

not been designed for high percentage of soluble materials, and that what was found 

when this model was tested for variety of no and Ø.  

Thus, a modification was done on this model and it has been used on the untreated 

and asphalt emulsion treated samples from both soils. The modified model showed a 

good match with all the coefficient of permeability results. Moreover, the modified Baena 

and Toledo (2014) model provided a good prediction for the coefficient of permeability 

in soil with gypsum, especially for lower values of dissolution (lower volume of soluble 

solids (Ø)).  

Conclusion 5: Laminar water flow conditions increased the gypsum dissolution 

linearly when compared to static water conditions for both soils samples treated 

with 6% asphalt emulsion.  

In the case of medium gypsum sand treated with 6% asphalt emulsion and went 

through cycles of wetting-drying in a container represented static water conditions, the 

gypsum dissolution average rate was approximately 0.16 g/L and the total percentage of 

dissolved gypsum was approximately 3.5%.  

While the gypsum dissolution average rate was approximately 2.45 g/L and the 

total percentage of dissolved gypsum was approximately 20% for medium gypsum soil 

sample treated with 6% asphalt emulsion and subjected to laminar flow during constant 

head permeability test. 
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For high gypsum sand treated with 6% asphalt emulsion and went through cycles 

of wetting-drying in a container represented static water conditions, the gypsum 

dissolution average rate was approximately  0.37 g/L and the total percentage of 

dissolved gypsum was approximately 9.5%, compared to gypsum dissolution average rate 

of approximately 2.32 g/L and a total percentage of dissolved gypsum of approximately 

78% for soil sample treated with  6% asphalt emulsion and subjected to laminar flow 

during constant head permeability test. 

Conclusion 6: The unconfined compressive strength (UCS) increases with increase 

in the gypsum content with all treatments for specimens survived the all the wetting-

drying cycles. 

For activated fly ash treated specimens which survived all the wetting-drying 

cycles, the UCS for medium gypsum sand treated with a dosage of 30% and cured for 28 

days was approximately 371 kPa, while for high gypsum sand treated and cured with the 

same conditions, the UCS was approximately 973 kPa.  

The same behavior also was found for asphalt emulsion treated specimens which 

survived all the wetting-drying cycles, for 12% asphalt emulsion dosage, the UCS for 

treated medium gypsum sand was approximately 543 kPa, and 701 kPa for treated high 

gypsum sand.  

Moreover, for 18% asphalt emulsion dosage, the UCS was approximately 971 kPa 

for treated medium gypsum sand, and 1353 kPa for treated high gypsum sand. Also, for 

the Portland cement reference specimens, which survived all the wetting-drying cycles, 

The UCS was approximately 2244 kPa and 5052 kPa for medium and high gypsum 

sands, respectively.  



www.manaraa.com

150 
 

These results showed that the presence of gypsum in sand increased the strength 

for all treated specimens. For the case of activated fly ash, gypsum reacted with the activate 

fly ash by producing many geopolymer gels with the ettringite and that results in the 

increase in soil strength. 

 For the case of the asphalt emulsion, the presence of gypsum in the soil will 

increase the adhering and the physical attraction between the asphalt binders and the 

calcium sulfate molecules, which as a result will stiffen the structure of the soil.  

On the other hand, Portland cement treatment will produce more CSH gel with more 

ettringite when the soil has more gypsum. However, this treatment is not desired for 

treating soil with gypsum due to self-sulfate attack during wetting. 

8.2 Recommendations 

Based on the results of this study, four major recommendations are proposed for 

future research.  

1- Evaluate asphalt emulsion treatment on sandy soils with lower gypsum content. 

It is recommended to evaluate the effects of asphalt emulsion treatment on sandy 

soils with gypsum contents as low as 5% and up to 25%. Previous studies from different 

regions around the world indicated that it is common to have soil conditions where 

gypsum does not dominate the soil composition.  

Studies have also shown that damage can occur to the superstructure when 

constructed on soils with gypsum content as low as 5%. The initial recommendation is to 

use a wider range of dosage rates, up to 18%, of asphalt emulsion mixed with low 

gypsum sands.  
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There is evidence of a direct relationship between asphalt binder content and 

calcium sulfate content, as the most significant improvement in soil properties were 

achieved when sands with medium to high gypsum content were treated with 18% 

asphalt emulsion.  

Using a range of asphalt emulsion dosage with soils that have lower gypsum 

content will help to establish a correlation between gypsum content and the optimum 

asphalt emulsion dosage.  

2- Evaluate the effects of mixing asphalt emulsion or liquid asphalt and activated 

fly ash on the properties of gypsum sands. 

The second recommendation is to explore the effectiveness of combining asphalt 

emulsion with activated fly ash. The use of 18% asphalt emulsion decreased permeable 

porosity and controlled volume change and mass loss to within tolerable limits.  

The most significant gains in unconfined compressive strength were observed in 

specimens treated with 30% activated fly ash and cured for 7 days. Therefore, a mixture 

of 18% asphalt emulsion and 30% activated fly ash could improve strength and stability 

while reducing the potential for gypsum dissolution. However, the combined dosage rate 

might not be feasible, and as such, an appropriate amount and ratio of the two additives 

needs to be studied. 

High dosage rates of asphalt emulsion are also not feasible due to the high 

proportion of water to asphalt in the emulsion. As observed in this study, mixtures with 

higher dosage rates of asphalt emulsion behaved more like slurry when mixed, making it 

difficult to prepare and compact the treated soil in a mold.  



www.manaraa.com

152 
 

Adding activated fly ash might help to mitigate this problem because of the higher 

water demand of the ash. An alternative solution is to replace asphalt emulsion with 

liquid asphalt to eliminate the excess water.   

3- Investigate the effects of NaCl concentration in water on gypsum dissolution in 

gypsum sands.  

It is recommended to repeat experiments on 18% asphalt emulsion treated soil 

specimens with saline water to investigate changes in soil properties under wetting-

drying conditions and continuous water flow. 

This study showed that continuous water flow dissolved more gypsum when 

compared to static water conditions. However, these studies were limited to tap water that 

contains a low concentration of soluble salts, where the sodium chloride concentration is 

expected to be less than 75 mg/L.  

Previous studies concluded that gypsum dissolution increases when other salts 

concentrations present in the water, a presence of sodium chloride (NaCl) increases 

gypsum dissolution three times the case of water without NaCl (Hardie 1967; and López 

et al., 1999, cited by Morillas et al., 2009). Therefore, its recommended to study the 

effects of different NaCl concentrations on gypsum sands properties. 

4- Modify the collapse potential test to accommodate continuous water flow. 

The standard collapse potential test does not allow for water to circulate through 

the soil sample inside the consolidation cell.  

Therefore, a modification of the experimental setup and procedures is 

recommended to simulate the effects of continuous water flow in the field, in an effort to 

provide more representative measurement of collapse potential.     
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